Atmos. Chem. Phys. Discuss., 12, 16131–16218, 2012 www.atmos-chem-phys-discuss.net/12/16131/2012/ doi:10.5194/acpd-12-16131-2012 © Author(s) 2012. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Simultaneous assimilation of satellite NO₂, O₃, CO, and HNO₃ data for the analysis of tropospheric chemical composition and emissions

K. Miyazaki 1,2 , H. J. Eskes 1 , K. Sudo 2,3 , M. Takigawa 2 , M. van Weele 1 , and K. F. Boersma 1,4

¹Royal Netherlands Meteorological Institute (KNMI), Wilhelminalaan 10, 3732 GK, De Bilt, The Netherlands

²Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

³Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

⁴Eindhoven University of Technology, Fluid Dynamics Lab, The Netherlands

Received: 22 May 2012 - Accepted: 11 June 2012 - Published: 2 July 2012

Correspondence to: K. Miyazaki (miyazaki@knmi.nl)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Discussion Pap	ACPD 12, 16131–16218, 2012		
oer Discussion	Simult assimil tropos compo K. Miyaz	Simultaneous assimilation of tropospheric composition K. Miyazaki et al.	
Paper	Title	Title Page	
—	Abstract	Introduction	
Disc	Conclusions	References	
ussion	Tables	Figures	
Pap	14	►I.	
	•	•	
	Back	Close	
iscussi	Full Screen / Esc		
on P	Printer-friendly Version		
aper	Interactive Discussion		

Abstract

We have developed an advanced chemical data assimilation system to combine observations of chemical compounds from multiple satellites. NO_2 , O_3 , CO, and HNO_3 measurements from the OMI, TES, MOPITT, and MLS satellite instruments are as-

- similated into the global chemical transport model CHASER for the years 2006–2007. The CHASER data assimilation system (CHASER-DAS), based on the local ensemble transform Kalman filter technique, simultaneously optimizes the chemical species, as well as the emissions of O₃ precursors, while taking their chemical feedbacks into account. With the available datasets, an improved description of the chemical feedbacks
- ¹⁰ can be obtained, especially related to the NO_x-CO-OH-O₃ set of chemical reactions. Comparisons against independent satellite, aircraft, and ozonesonde data show that the data assimilation results in substantial improvements for various chemical compounds. These improvements include a reduced negative tropospheric NO₂ column bias (by 40–85%), a reduced negative CO bias in the Northern Hemisphere (by 40–
- 90%), and a reduced positive O₃ bias in the middle and upper troposphere (from 30–40% to within 10%). These changes are related to increased tropospheric OH concentrations by 5–15% in the tropics and the Southern Hemisphere in July. Observing System Experiments (OSEs) have been conducted to quantify the relative importance of each data set on constraining the emissions and concentrations. The OSEs confirm
- ²⁰ that the assimilation of individual data sets results in a strong influence on both assimilated and non-assimilated species through the inter-species error correlation and the chemical coupling described by the model.

1 Introduction

Tropospheric ozone (O_3) is an important chemical species for air quality and climate. It is an atmospheric pollutant in the lower troposphere and an effective greenhouse gas in the upper troposphere. Surface emissions of carbon monoxide (CO) and nitrogen

oxides (NO_x) play an important role in determining tropospheric O₃ abundances. CO is an important precursor of tropospheric O₃ under high NO_x conditions. The concentration of CO is strongly related to the oxidising capacity of the atmosphere since it reacts primarily with OH (e.g. Logan et al., 1981; Daniel and Solomon, 1998; Thompson, 1992). Because of its long lifetime in the troposphere, CO is a good tracer of the long-range transport of polluted air. In the middle and upper troposphere, O₃ can be generated efficiently through lightning NO_x sources (e.g. Pickering et al., 1998; Jenkins and Ryu, 2004; Martin et al., 2007). Oxidation of NO_x to HNO₃ and aerosol uptake of NO₂, NO₃, N₂O₅ dominate NO_x loss in the troposphere. The abundance of tropospheric CO and NO₂ influences the atmospheric lifetime of the important greenhouse gases, methane (CH₄), O₃ (Shindell et al., 2009), and also CO₂ (Folberth et al., 2005). NO_x and CO have both anthropogenic and natural sources. Anthropogenic sources

include fossil fuel and biofuel combustion. Natural sources include biomass burning, soil, and also lightning emissions for NO_x . CO is produced from the oxidation of hydro-

- ¹⁵ carbons by the incomplete combustion of fossil fuels and biofuels, and during biomass burning events (Holloway et al., 2000). Knowledge about variations in surface emissions is important, but currently available bottom-up emissions inventories have large uncertainties. These inventories use statistical data, which generally have coarse resolution and large uncertainties. The extent of emission-related activities and emission
- factors are sources of error. In addition, temporal (e.g. diurnal, weekly, seasonal, interannual) variations in emissions are generally poorly represented in the inventories. For instance, rapid economic growth in industrialized Asia has led to a rapid increase in the concentrations of O₃ precursors, such as NO₂, CO (Richter et al., 2005; Stavrakou and Müller, 2006; van der A et al., 2008), and Volatile Organic Compounds (VOCs) (Fu et al., 2007), but these may not be captured well by most of the inventories.

In the past decade, top-down inverse modelling approaches have been proposed to estimate emission variations in CO (e.g. Kasibhatla et al., 2002; Arellano et al., 2004; Stavrakou and Müller, 2006; Kopacz et al., 2009; Hooghiemstra et al., 2011) and in NO_x (e.g. Martin et al., 2003; Boersma et al., 2008b; Zhao and Wang, 2009; Lamsal

et al., 2010; Miyazaki et al., 2012). The inversion adjusts the emissions in order to minimize the discrepancy between the model predictions and observations, while taking the observation errors into account. The estimated regional emissions show large discrepancies among different estimates, reflecting differences in inversion frameworks,

- ⁵ atmospheric models (e.g. Arellano and Hess, 2006), and datasets (e.g. Miyazaki et al., 2012) employed in the analyses. Since the relationship between surface fluxes and atmospheric abundances is assumed to be predicted well by the model in the inversions, it is important to represent the chemical processes in a realistic way when estimating the emissions. The CO-OH-NO_x-non-methane VOC (NMVOC) chemical interac-
- tions may have large impacts on the inversion of NO_x and CO emissions (Müller and Stavrakou, 2005). For instance, neglecting the chemical feedback of changes in surface emissions on the abundance of OH could introduce biases in the a posteriori estimates of the CO sources (Jones et al., 2009).

Data from satellite sensors can provide strong constraints on tropospheric composition in inversions. Tropospheric NO₂ concentrations are measured by Ozone Monitoring Instrument (OMI) (Levelt et al., 2006), Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (Bovensmann et al., 1999), and Global Ozone Monitoring Experiment (GOME) and GOME-2 Callies et al. (2000). Tropospheric CO has been retrieved from Tropospheric Emission Spectrometer (TES) (Lopez et al.,

- 2008), Infrared Atmospheric Sounding Interferometer (IASI) (Turquety et al., 2004), Measurement of Pollution in the Troposphere (MOPITT) (Deeter et al., 2003; Edwards et al., 2006), and SCIAMACHY (Gloudemans et al., 2009). In recent years, tropospheric O₃ retrievals in the thermal infrared (TIR) have been made from TES (Beer, 2006; Parrington et al., 2008), the Atmospheric Infrared Sounder (AIRS), and IASI (Co-
- ²⁵ man et al., 2012). Limb-viewing satellite instruments, like the Microwave Limb Sounder (MLS), are capable of providing valuable information on the upper troposphere and the lower stratosphere (UTLS). Because of the differences between the instruments in terms of sensitivity, retrieval techniques, and observing schedules, the combined use of different satellite instruments is challenging (e.g. Kopacz et al., 2010).

Data assimilation is a technique to combine different observational data sets with a model. Data assimilation systems for tropospheric chemistry have been developed in the past decade for mapping the global distribution of chemical species, including O₃ and its precursors. In the past decade, advanced techniques involving the variational approach (Elbern and Schmidt, 2001; Errera et al., 2008; Flemming et al., 2009; Elguindi et al., 2010) and Kalman filters (Khattatov et al., 2000; Eskes and Boersma, 2003; Grassi et al., 2004; Hanea et al., 2004; Segers et al., 2005; Parrington et al., 2008) have been applied to atmospheric chemistry. Recently, the ensemble Kalman filter (EnKF) technique has been applied for tropospheric chemical data assimilation (van Loon et al., 2000; Arellano et al., 2007; Constantinescu et al., 2007; Coman et al.,

(van Loon et al., 2000; Arellano et al., 2007; Constantinescu et al., 2007; Coman et al., 2012). The EnKF uses an ensemble forecast to estimate the background error covariance matrix. The advantage of the EnKF is its easy implementation for complicated systems; i.e. it does not require the development of an adjoint code.

The use of data assimilation for atmospheric chemistry, especially for short-lived chemical species, is still challenging, as discussed by Lahoz et al. (2007) and Sandu and Chai (2011). Short-lived species concentrations vary on timescales from less than a minute to one day, and detailed treatment of various chemical processes is required to simulate the variability. The atmospheric chemical system is also stiff in the sense that small perturbations are damped out quickly in time, which is very different from

- the chaotic system involved in the numerical weather prediction (Constantinescu et al., 2007; Lahoz et al., 2007). Because of this a large part of the chemical system is not sensitive to initial conditions, but is sensitive to the model parameters (e.g. emission, chemical reaction rate, and deposition velocity) and processes (e.g. chemical reaction equation, wet and dry deposition, and atmospheric transport). Although the errors in
- simulated tropospheric composition are caused by many factors, they are largely affected by highly uncertain emissions. Thus, the simultaneous adjustment of emissions and concentrations is a powerful framework in tropospheric chemical data assimilation.

In this study, an advanced EnKF data assimilation system is presented to simultaneously optimize the chemical concentrations and emissions in the troposphere. Satellite

observations of O₃, CO, NO₂, and HNO₃ obtained from TES, MOPITT, OMI, and MLS are assimilated into the global chemical transport model (CTM) "Chemical AGCM for study of atmospheric environment and radiative forcing" (CHASER). TES has the potential to efficiently constrain tropospheric O₃ profiles (Foret et al., 2009). MOPPIT is suitable for global CO emission estimates because of its good global coverage. MLS is expected to provide important constraints on the background concentrations of O₃, HNO₃, and other O₃ precursors in the UTLS together with lightning NO_x sources. The high temporal and spatial resolutions of the OMI are useful to optimize NO_x emissions on a daily basis. The assimilation results are validated against independent data, obtained from five satellite instruments, MLS/OMI (tropospheric O₃ column, TOC), TES (CO), and GOME-2 and SCIAMACHY (tropospheric NO₂ column). Global ozonesonde data and aircraft observations obtained during the INTEX-B campaign (Singh et al., 2009) are also used for the validation of the vertical profiles. To the authors best knowledge, this is the first advanced data assimilation system that simultaneously optimizes

- the concentrations and emissions of multiple tropospheric trace gases, based on multiple satellite sensor/species data sets. The structure of this paper is as follows. Section 2 describes the data. Section 3 introduces the data assimilation system. Section 4 presents Observing System Experiment (OSE) results to identify the relative contribution of each assimilated data set. Section 5 presents the data assimilation results including the estimated emissions the validation, and the properties of the assimilated.
- ²⁰ including the estimated emissions, the validation, and the properties of the assimilated fields.

2 Observations

This section introduces the observations used for the data assimilation (Sect. 2.1 and Table 1) and validation (Sect. 2.2 and Table 2). The data assimilation requires an observation operator, *H*, for each satellite retrieval. The model fields, *x*, are first interpolated to the horizontal location of each observation and the height of each of the vertical layers using the spatial interpolation operator, *S*. Then the averaging kernel, **A**, and

the a priori profile, x_a , of each observation are applied to obtain the model fields in the observation space, y^b ,

$$y^{\mathsf{b}} = H(x) = x_{\mathsf{a}} + \mathbf{A}(S(x) - x_{\mathsf{a}}).$$

The averaging kernel matrix is used to define the sensitivity of the estimated state to changes to the true state, while the trace of the averaging kernel matrix gives a measure of the number of independent pieces of information, i.e. the Degree of Freedom for Signals (DOFs) (Rodgers, 2000). In this approach, the satellite-analysis difference $(y^{o} - y^{b})$ is not, or only weakly, biased by the a priori profile x_{a} (Eskes and Boersma, 2003; Rodgers and Connor, 2003),

10
$$y^{o} - y^{b} = \mathbf{A}(x_{true} - S(x)) + \epsilon$$
,

15

where the observational error ϵ is the sum of the measurement error and the representativeness error. The same observation operator has been also applied for validating the model profile against retrievals in order to remove for a large part the influence of the smoothing error and the retrieval error arising from the a priori profile. For plotting the global distribution, both the retrieved and simulated concentrations are mapped onto a same resolution of $2.5 \times 2.5^{\circ}$ ($1.25 \times 1^{\circ}$ for MLS/OMI TOC only).

2.1 Measurements used in the assimilation

2.1.1 OMI tropospheric NO₂ column

The Dutch-Finnish OMI instrument, which was launched aboard the Aura satellite in July 2004, is a nadir-viewing imaging spectrograph (Levelt et al., 2006). Aura traces a sun-synchronous, polar orbit with a period of 100 min. The local equator crossing time of Aura is about 13:40 LT. OMI provides measurements of both direct and atmospherebackscattered sunlight in the ultraviolet visible range from 270 to 500 nm. OMI pixels are 13 × 24 km at nadir, increasing in size to 24 × 135 km for the largest viewing angles.

(1)

(2)

OMI tropospheric NO₂ column retrievals, with their daily global coverage, are effective to constrain global NO_x emissions on a daily basis, unlike GOME-2 and SCIAMACHY retrievals which have poorer spatial and temporal resolutions and less global coverage. The overpass time of OMI is more suitable for the estimation of lightning NO, ⁵ sources than that of GOME-2 and SCIAMACHY (both in the morning). The Dutch OMI tropospheric NO₂ data product DOMINO version 2 (Boersma et al., 2011) is used in this study. The error in OMI NO₂ retrievals for individual pixels can be approximated as 1.0×10^{15} molec cm⁻² + 25 % (Boersma et al., 2011). Details of the retrieval and error estimates are described by Boersma et al. (2004, 2007, 2011). Only observations with a radiance reflectance from clouds of less than 50 % (i.e. cloud fraction less than about 20%) and surface albedo of less than 0.3 with quality flag = 0 (meaningful tropospheric retrievals) are used, as recommended by the product specification document.

The averaging kernel is used to create modeled tropospheric NO₂ columns from the observation operator, which removes the contribution of the retrieval error due to the a priori profile assumed (Eskes and Boersma, 2003). The detailed process of the 15 conversion from simulated NO₂ fields into tropospheric NO₂ columns using the aver-

- aging kernel is described by Miyazaki et al. (2012). The spatial resolution of the OMI data is much finer than that of the model used in this study (= 2.8°). Thus, there are large representativeness errors in the model because of unresolved small-scale vari-
- ations. To fill the spatial scale gaps and to obtain more representative data, a super-20 observation approach has been developed and applied to the OMI data, as described by Miyazaki et al. (2012). The super-observation error covariance matrix includes contributions from the measurement error and the representation error. Miyazaki et al. (2012) demonstrated that the super-observations help to improve the analysis.

2.1.2 TES O₃ profile 25

TES onboard EOS-Aura, which was launched in July 2004 into a polar sunsynchronous orbit with an ascending equator crossing time of 13:40 LT, was designed to measure the global, vertical distribution of tropospheric O₃ and its precursors

ACPD

(Beer, 2006; Bowman et al., 2009). TES is an infrared Fourier transform spectrometer (FTS) with high spectral resolution (0.1 cm^{-1}) and a wide spectral range from 650 to 3250 cm⁻¹. The version 4 level 2 nadir data obtained from the global survey mode are used in this study. This product consists of 16 daily orbits of nadir-viewing mea-⁵ surements with a spatial resolution of 5 × 8 km spaced 1.6° apart along the orbit track every other day. The TES algorithm is described by Bowman et al. (2002), Worden et al. (2004), and Bowman et al. (2006). The vertical sensitivity of the nadir retrieval varies from scan to scan, depending primarily on atmospheric temperature, clouds, and trace gas amounts. The vertical resolution of TES O₃ profile retrievals is typically 6 km in the tropics and in the summer hemisphere for cloud free conditions (Worden et al., 2004). The peaks of the TES O₃ averaging kernel matrix are generally in the middle troposphere, while its sensitivity is reduced greatly in the lower troposphere. On

average, there are less than 2 DOFs for the tropospheric profile in the tropics.

- The observation operator is applied to account for the vertical smoothing of the retrievals as reflected by the averaging kernel and for the TES a priori profile derived from Model for Ozone and Related Chemical Tracers (MOZART) CTM simulations. This removes the influence of the a priori profile in the data assimilation, as performed by Jones et al. (2003). The observation error includes the smoothing error, the systematic error, and the measurement error. Vertical correlations due to the smoothing influence
- of the TES retrievals are accounted for in the forecast error covariance matrix through the influence of the averaging kernel. The TES data used in the data assimilation are filtered following the TES L2 Data Users Guide (Osterman et al., 2009). The C-Curve flag and the emission layer quality flag were used to exclude low-quality data. We excluded data poleward of 70°, where satellite sensitivities are low because of the low brightness temperature. The quality of TES O₃ retrievals in the troposphere has been
- evaluated using ozonesonde measurements. TES O_3 profiles are positively biased by less than 15 % from the surface to the uppertroposphere (to 100 hPa) and negatively biased by less than 20 % from the upper troposphere to the lower stratosphere (100 to 30 hPa) (Worden et al., 2007; Nassar et al., 2008; Boxe et al., 2010). TES total columns

have also been compared with the observations from OMI and MLS (Osterman et al., 2008), confirming a similar high bias both in the troposphere and stratosphere. We will investigate the effect of the bias in TES O_3 data on the data assimilation in Sect. 5.1.3.

2.1.3 MOPITT CO profile

- ⁵ The MOPITT instrument was launched onboard EOS Terra in December 1999. MO-PITT measures thermal emission in the 4.7 μm absorption band. The equator crossing time is 10:30 LT/22:30 LT with global coverage every 3 days. CO mixing ratio profiles are retrieved at nine standard MOPITT pressure levels and at the surface for clear sky measurement. The data employed are the version 5 level 2 TIR data. Compared
- to version 4, the version 5 product offers improved long-term stability and more accurately accounts for random errors due to geographical noise (Deeter, 2011). The MOPITT instrument is mainly sensitive to free tropospheric CO, especially in the mid-dle troposphere, but it also provides boundary layer information (Deeter et al., 2003, 2007, 2010). Since the retrieval is based on measurements in the TIR spectral range,
- the actual vertical resolution of a retrieved profile depends on the thermal contrast between the surface and the atmosphere. DOF is typically much larger than 0.5, indicating that most of the information comes from the measurement as opposed to the a priori (Kopacz et al., 2010). Maximum zonal mean DOF values of approximately 1.5 occur in daytime overpasses over land in the tropics.
- ²⁰ The MOPITT retrieval algorithm is based on the Maximum A Posteriori (MAP) solution (Deeter et al., 2010). Results from MOZART were used to create a monthly mean climatology used as the a priori. The retrieved error represents the cumulative error from the smoothing error, model parameter error, forward model error, geophysical noise, and instrument error. These are accounted for in the observation error covari-
- ance. We exclude MOPITT data in polar regions (>65° latitude), where the quality deteriorates because of potential problems related to cloud detection and icy surfaces. Also, the retrievals in these regions have low information content related to poor thermal contrast conditions. Daytime conditions typically provide better thermal contrast conditions

for TIR-based retrievals than nighttime conditions over land, whereas nighttime observations have not been validated and appear subject to larger bias (Heald et al., 2004). We thus exclude the nighttime MOPITT data using a filter based on solar zenith angle. The super-observation approach is applied to the MOPITT data in the same manner as

- for the OMI data. The representativeness error for the MOPITT super-observations derived from the variability of the observed concentrations in a super-observation grid-cell is typically much smaller (less than 5%) than that for OMI tropospheric NO₂ columns. Validation results based on in situ profiles exhibit a bias of less than 1% at the surface, 700 hPa, and 100 hPa, and nearly -6% at 400 hPa for version 4 data (Deeter et al.,
- 2010). No bias correction is applied to MOPITT data in this study. The MOPITT data on the 9 pressure levels (900, 800, 700, 600, 500, 400, 300, 200, and 100 hPa) and at the surface are used in the data assimilation, while the data only at 700 hPa is used for the CO emission optimization.

2.1.4 MLS O₃ and HNO₃ profile

The MLS instrument was launched in August 2004 onboard the Aura satellite in a sun-synchronous polar orbit. Vertical profiles of several atmospheric parameters are retrieved from the millimeter and sub-millimeter thermal emissions measured in the atmospheric limb (Waters et al., 2006). The vertical resolution for the standard O₃ product is up to 2.5 km in the uppermost troposphere and stratosphere. We use the version 3.3
 level 2 MLS O₃ and HNO₃ products. A detailed validation and comparison with other

data sets is available in Livesey et al. (2011).

We used data with good quality flags, with quality fields greater than 0.6 (1.0), odd status fields, and convergence fields less than 1.18 (1.6) for O_3 (HNO₃), following the recommendations (Livesey et al., 2011). In the UTLS, the MLS version 3.3 retrieval

provides data at 6 levels, 316, 261, 215, 150, 100, and 68 hPa. Since further evaluations are still required for data for pressures higher than 261 hPa, we use only data for pressures lower than 215 hPa. For HNO_3 , data for pressures less than 150 hPa are used because of large systematic uncertainties at 215 hPa (±30%). The presence of

thick clouds (i.e. ice particles in convective cores) can lead to unphysical values in version 3.3 data. Detailed instructions for screening tropical-cloud-induced outliers in the HNO₃ and O₃ products given in the version 3.3 data quality document (Livesey et al., 2011) were applied before data assimilation. Because the instrument's vertical resolution is reasonably comparable to the model grid, the averaging kernel is neglected. The measurement error is used as the diagonal element of the observation error covariance matrix, while the vertical correlation is neglected. The error characteristics of version 3.3 O₃ data may not be significantly different from those of version 2.2 in the UTLS (Froidevaux et al., 2008). In contrast, those of HNO₃ in version 3.3 have been greatly improved over those in version 2.2; e.g. a low bias throughout the stratosphere has been largely eliminated, with a typical precision (bias uncertainty) of 0.7–1.2 ppbv (0.5–1.0 ppbv) from 215 to 32 hPa (Livesey et al., 2011).

2.2 Measurements used for validation

2.2.1 SCIAMACHY tropospheric NO₂ column

- SCIAMACHY, which was launched in March 2002 on board ENVISAT (Bovensmann et al., 1999), is a passive remote sensing spectrometer observing backscattered, reflected, transmitted and emitted radiation from the atmosphere and the Earths surface, in the wavelength range between 240 nm and 2380 nm and with a spectral resolution of 0.25 nm in the UV and 0.4 nm in the visible. We use the version 2 tropospheric NO₂ data
- from the KNMI retrieval algorithm (Boersma et al., 2004, 2011). The ground pixel of the nadir mode is generally 60 × 30 km, but depends on the solar zenith angle, with global coverage approximately once every six days. The local overpass time is 10:00 LT. The approach adopted to calculate the AMF is the same as that for DOMINO version 2 data. Errors in the slant column fitting, the stratospheric corrections, and in the AMFs lead
- to an overall error in the SCIAMACHY retrieval, as described in Boersma et al. (2004). The error for individual pixels can be approximated as 0.7×10^{15} molec cm⁻² + 25 %

(Boersma et al., 2011). Cloud radiance fraction of less than 50% with quality flag = 0 is used for the comparison.

2.2.2 GOME-2 tropospheric NO₂ column

GOME-2, which is an improved version of the GOME instrument, is a nadir UV-visible spectrometer (Callies et al., 2000). GOME-2 covers the spectral range between 240 nm and 790 nm and has a spectral resolution between 0.25 nm and 0.5 nm. The ground pixel size of GOME-2 tropospheric NO₂ retrievals is 80 × 40 km, with a global coverage within 1.5 day. The equatorial overpass time is at 09:30 LT in the descending node. This study employs the version 2 tropospheric NO₂ data from the KNMI retrieval algorithm (Boersma et al., 2004, 2011). The error for individual pixels can be approximated as 0.7×10^{15} molec cm⁻² + 25% (Boersma et al., 2011). Only observations with a radiance reflectance of less than 50% from clouds with quality flag = 0 were used.

2.2.3 TES CO

Version 4 CO profiles retrieved from TES measurements are used for the validation.
 The TES CO parameters describing the retrieval vertical information in the troposphere are much improved after the optical bench warm up in early December 2005, resulting in better alignment of the instrument and increased signal to noise. The TES CO retrievals are sensitive primarily to CO in the troposphere, with a DOF between 1 and 1.5 for the tropospheric profile. The maximum sensitivity appears in the lower troposphere, below 500 hPa (Parrington et al., 2008).

Global patterns of CO as measured by TES are in good qualitative agreement with those seen by MOPITT. The mean difference between column abundances of CO from TES and MOPITT was less than 5%. TES CO agrees within the estimated uncertainty of the aircraft instruments, including both errors and the variability of CO itself (Luo et al., 2007; Ho et al., 2009). The TES and MOPITT retrievals both peak mainly from

et al., 2007; Ho et al., 2009). The TES and MOPITT retrievals both peak mainly from 300 to 800 hPa.

2.2.4 OMI/MLS tropospheric O₃ column (TOC)

Several approaches have been developed to derive global TOC from satellite measurements that involve subtracting the stratospheric O_3 column measured in the limb from the total O_3 column measured independently in the nadir (Ziemke et al., 2006; Schoe-

- ⁵ berl et al., 2007). The monthly mean TOC data derived using the OMI total columns and the MLS profiles from Ziemke et al. (2006) with a horizontal resolution of 1 × 1.25° are used for the validation. Ziemke et al. (2006) produced TOCs at the MLS measurement locations in daylight, where OMI retrievals are available, and where it is not excessively cloudy. Note that the quality of the derived TOC can be very sensitive to the choice of the tropopause definition in this approach (Stajner et al., 2008). Outside the tropics, the large and remining the participant tensor produced and the sense of the tensor of tensor of the tensor of the tensor of te
- the large and rapid tropospheric O_3 variability complicates determining tropospheric O_3 , as it requires individual observations to be of sufficient accuracy.

2.2.5 Ozonesonde

Ozonesonde observations are taken from the World Ozone and Ultraviolet radiation ¹⁵ Data Center (WOUDC) and the Southern Hemisphere Additional Ozonesondes project (SHADOZ) database. The accuracy of the ozonesonde measurement is about ±5% in the troposphere (Smit and Kley, 1998). The observation sites considered for the validation are listed in Table 3. We use data from 39 locations for a total number of 99 (89) observations in January (July) 2007.

- To compare ozonesonde measurements with the simulation and the data assimilation, all ozonesonde profiles have been interpolated to a common vertical pressure grid, with a bin of 25 hPa. Then, for each interpolated observed profile, the co-located model profile is computed using the nearest neighbor grid point data for the linear space/time interpolation. The averaged profile is computed globally and for three latitudinal bands, the Northern Hemisphere (30–90° N), the tropics (30° S–30° N), and the
- tudinal bands, the Northern Hemisphere (30–90° N), the tropics (30° S–30° N), and the Southern Hemisphere (90–30° S). The standard deviations of the normalized differences are computed over these regions.

2.2.6 INTEX-B aircraft measurements

Aircraft vertical trace gas (CO, SO₂, O₃, OH, NO₂, NO, CO, HNO₃, PAN, HO₂, CH₂O, and H₂O) profiles were obtained using the UC Berkeley Laser-Induced Fluorescence (TD-LIF) instrument on a DC-8 during the INTEX-B campaign over the Gulf of Mexico

- ⁵ (Singh et al., 2009). Thornton et al. (2003), Bucsela et al. (2008), Hains et al. (2010) provide a detailed description and discuss the performance of the measurements. In the comparison between model and assimilation results, the data were binned on a pressure grid with an interval of 30 hPa, while the model output was interpolated to the time and space of each sample. Data collected over highly polluted areas (over Mexico City and Houston) have been removed from the comparison, since they can
- 10 Mexico City and Houston) have been removed from the comparison, since they can cause a serious representativeness error in the comparison (Hains et al., 2010). The comparisons were made for March 2006.

3 Data assimilation system

The CHASER data assimilation system (CHASER-DAS) is developed based on an ensemble Kalman filter approach. This section introduces the forecast model, the data assimilation approach, and the experimental settings.

3.1 The global chemical transport model CHASER

The forecast model used in the data assimilation system is the global CTM CHASER (Sudo et al., 2002). CHASER includes detailed chemical and transport processes in
 the troposphere, including 88 chemical and 25 photolytic reactions with 47 chemical species, and has a horizontal resolution of T42 (2.8°) and 32 vertical levels from the surface to 4 hPa. CHASER is coupled to the atmospheric general circulation model, Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) atmospheric general circulation model (AGCM) ver. 5.7b. The AGCM
 fields are nudged toward National Centers for Environmental Prediction/Department of

Energy Atmospheric Model Intercomparison Project II (NCEP-DOE/AMIP-II) reanalysis (Kanamitsu et al., 2002) at each time step (i.e. every 20 min) in order to reproduce past meteorological conditions.

- As described by Miyazaki et al. (2012), the anthropogenic emissions are based on a yearly mean inventory of national emissions obtained from the Emission Database for Global Atmospheric Research (EDGAR) version 3.2 (Olivier et al., 2005). The Global Fire Emissions Data base (GFED) version 2.1 (Randerson et al., 2007), estimated on a monthly basis, is employed for emissions from biomass burning. The monthly biogenic emissions from vegetation, obtained via the GEIA inventory (Guenther et al., 1995), are considered for isoprene, terpenes, and other non-methane VOCs. NO_x emissions from soils are based on monthly mean Global Emissions Inventory Activity
- emissions from soils are based on monthly mean Global Emissions Inventory Activity (GEIA) (Graedel et al., 1993). The emissions over Asia were obtained from Regional Emission inventory in Asia (REAS) version 1.1 (Ohara et al., 2007). The emissions for the simulation years 2006–2007 are obtained by extrapolating the emissions inven-
- tories from the years 1995 and 2000. Emissions of lightning NO_x are linked to deep convection following the parameterization of Price and Rind (1992). The lightning NO_x production is calculated at each time step of CHASER using the convection scheme in the AGCM. The total aircraft NO_x emission is 0.55 TgNyr⁻¹, which is obtained from the EDGAR inventory. We apply a diurnal variability scheme to the surface NO_x emissions
 depending on the dominant category for each area: anthropogenic, biogenic, and soil
- ²⁰ depending on the dominant category for each area: anthropogenic, biogenic, and soil emissions, as in Miyazaki et al. (2012).

3.2 Ensemble Kalman filter data assimilation

The data assimilation technique used in this study is a local ensemble transform Kalman filter (LETKF) (Hunt et al., 2007). The implementation is the same as in ²⁵ Miyazaki et al. (2012). The LETKF has conceptual and computational advantages over the original EnKF (e.g. Ott et al., 2004; Hunt et al., 2007). The LETKF performs the analysis locally in space and time, reducing sampling errors caused by limited

ensemble size. It also reduces the computational cost by performing most calculations in parallel (Miyoshi and Yamane, 2007).

The LETKF transforms a background ensemble $(\mathbf{x}_i^b; i = 1, ..., k)$ into an analysis ensemble $(\mathbf{x}_i^a; i = 1, ..., k)$ and updates the analysis mean, where **x** represents the model variable; *b* the background state; *a* the analysis state; and *k* the ensemble size. In the forecast step, a background ensemble, \mathbf{x}_i^b , is globally obtained from the evolution of each ensemble model simulation. The background ensemble mean, $\overline{\mathbf{x}^b}$, and its perturbations (spread), \mathbf{X}^b , are thus estimated from the ensemble forecast,

$$\overline{\mathbf{x}^{\mathrm{b}}} = \frac{1}{k} \sum_{i=1}^{k} \mathbf{x}_{i}^{\mathrm{b}}; \quad \mathbf{X}_{i}^{\mathrm{b}} = \mathbf{x}_{i}^{\mathrm{b}} - \overline{\mathbf{x}^{\mathrm{b}}}.$$

¹⁰ These are $N \times k$ matrices, where N indicates the system dimension and k indicates the ensemble size.

In the analysis step, an ensemble of background observation vectors in the observation space, $\mathbf{y}_i^{\rm b} = H(\mathbf{x}_i^{\rm b})$, is estimated using the non-linear observational operator *H*. An ensemble of background perturbations $\mathbf{Y}^{\rm b} = \mathbf{y}_i^{\rm b} - \overline{\mathbf{y}^{\rm b}}$ is also computed. The ensemble mean is then updated by

$$\overline{\mathbf{x}^{a}} = \overline{\mathbf{x}^{b}} + \mathbf{X}^{b} \widetilde{\mathbf{P}}^{a} (\mathbf{Y}^{b})^{T} \mathbf{R}^{-1} (\mathbf{y}^{o} - \overline{\mathbf{y}^{b}}),$$

20

where \mathbf{y}^{o} is the observation vector, **R** is the $p \times p$ observation error covariance, $\tilde{\mathbf{P}}^{a}$ is the local analysis error covariance in the ensemble space. The new analysis ensemble perturbation matrix in the model space \mathbf{X}^{a} is simultaneously obtained by transforming the background ensemble \mathbf{X}^{b} . Further details are described in Hunt et al. (2007) and Miyazaki et al. (2012).

EnKF approaches always have a spurious long distance correlation problem because of imperfect sampling of the probability distribution due to limited ensembles (Houtekamer and Mitchell, 2001). In complex chemical data assimilation systems, a realistic estimation of the background error distribution is very important (Singh et al.,

(3)

(4)

2011; Massart et al., 2012). Boynard et al. (2011) demonstrated that the spatial correlations estimated from ensemble simulations are overestimated in the chemical model error covariance fields, and suggested the need for special attention to avoid too large correlation of fields distant from the location of the observation. A covariance localiza-

tion technique is used to avoid possible degradation because of under sampling. We assumed that observations located far from the analysis point have larger errors and that those observations have less effect on the analysis (Miyoshi and Yamane, 2007). A correct choice of ensemble size and correlation lengths is important to improve the data assimilation performance, as will be discussed in Sect. 3.3.4

10 3.3 Experimental setting

Three series of one-month data assimilation experiments have been conducted, starting from the 1 March 2006, 1 January 2007, and 1 July 2007. The data assimilation cycle is 100 min; e.g. each orbit cycle of polar-orbit satellites. This setting is useful to reduce the time discrepancy (sampling errors) between the observations and the model in the data assimilation, given distinct diurnal variation in tropospheric chemistry (Miyazaki et al., 2012). Figure 1 shows a schematic diagram of the data assimilation process.

3.3.1 State vector

15

The state vector is chosen to include uncertain model aspects that most effectively optimize the tropospheric chemical system. First, emissions are a major source of uncertainty in CTM simulations. The solution of a tropospheric chemical model is only weakly influenced by the initial conditions, because of the strong stiffness of tropospheric chemical processes (Constantinescu et al., 2007; Lahoz et al., 2007). An improvement could be achieved by an ensemble obtained by perturbing various parameters of the model (emissions, reaction rates, etc.). The EnKF can be extended to include such parameters in the data assimilation process. A state vector which includes

both the concentrations and the emissions makes it possible to find the optimal values for the emissions, which are linked to the concentrations by the CTM. In the EnKF system, the background error covariance, estimated from the ensemble CTM simulations, varies with time and space, reflecting dominant atmospheric processes. The local analysis increment for emissions thus reflects the complex indirect relationship

between concentrations and emissions of related species.

The surface emissions of NO_x, $e(NO_x)$, the surface emissions of CO, e(CO), the lightning sources of NO_x, $e(LNO_x)$, and the concentrations of all the predicted (total 35) chemical species, *c*, are optimized at all the models grid cells for each data assimilation cycle. The background ensemble can be represented as follows,

 $\mathbf{x}_{i}^{\mathrm{b}} = \begin{bmatrix} c_{i}^{\mathrm{b}} \\ e(\mathrm{NO}_{\mathrm{x}})_{i}^{\mathrm{b}} \\ e(\mathrm{CO})_{i}^{\mathrm{b}} \\ e(\mathrm{LNO}_{\mathrm{x}})_{i}^{\mathrm{b}} \end{bmatrix}.$

5

15

Although the data assimilation system simultaneously updates emissions of NO_x and CO, we treat the data independently and do not include NO_x -CO emissions covariance in the background error matrix. This is to avoid the effects of spurious multi-variate correlations in the background error covariance, possibly developed because of limited ensembles, and errors in both model and observations. However, the forecasted atmospheric concentration of NO_2 and CO are coupled chemically through their effect on the tropospheric chemistry.

Based on sensitivity experiment results (see Sect. 4), we have also applied the variable localization to improve the analysis. This means the covariance among non- or weakly-related variables is set to zero. This technique allows us to neglect the correlations among variables that may suffer significantly from spurious correlations. The state vector structure used is summarized in Fig. 2. With the technique, lightning NO_x sources are optimized using TES O₃, OMI NO₂, and MLS O₃ and HNO₃ observational whereas the approximate between CO approximate and lightning NO_x

 $_{\rm 25}$ tions, whereas the covariance between CO concentration and lightning NO_x sources

(5)

was set to be zero, since their error correlation are not expected to contain meaningful information. Similarly, OMI tropospheric NO_2 column data are used to update the concentrations of NO_y (= NO_x + HNO_3 + HNO_4 + PAN + MPAN + N_2O_5) species only, since the ensemble may not contain meaningful information on the profile of other chemi-

- ⁵ cal species. For the same reason, and related to their poor quality, MLS HNO₃ data are only allowed to influence the NO_y species in the analysis. Similarly, MOPITT CO data affect the concentration of CO, hydrocarbons, and formaldehyde only. CO emissions are optimized using MOPITT CO data only. The variable localization is found to significantly improve the analysis (see Sect. 4.2).
- In addition to the full assimilation run (with all the data), we have also conducted a control run (without any assimilation), five observing system experiments (see Sect. 4), and an emission inversion run. The emission inversion run, in which only surface emissions are optimized, has been compared with the full assimilation run in which both the concentration and emission are updated (see Sect. 5.2). Further, we have conduced an idealized data assimilation experiment in which synthetic observa-
- tions are derived from a perturbed model run. The results obtained from the idealized experiment confirmed that the data assimilation system is properly implemented, and the simultaneous optimization for O_3 concentration and its precursors emissions is a powerful framework for the tropospheric chemistry analysis (see Appendix A).

20 3.3.2 Parameter estimation

A diurnal variability is implemented for the NO_x emissions as in Miyazaki et al. (2012), depending on the dominant source category for each area. The lightning NO_x sources vary in time and space, reflecting the variability in meteorological fields. However, because a model error term is not implemented during the forecast step, the background ²⁵ error covariance is possibly underestimated. To prevent covariance underestimation during the data assimilation, we have applied a covariance inflation to the analyzed emission as in Miyazaki et al. (2012). The analyzed standard deviation (i.e., background error) is artificially inflated to a minimum predefined value at each analysis

CC II

step. This minimum value is chosen as 30 % of the initial standard deviation, based on sensitivity experiments.

The initial error is set to 40 % of the a priori emissions for surface emissions of NO_x and CO. For lightning NO_x sources, the initial error is set to 60 %, considering large discrepancies among different estimates (Schumann and Huntrieser, 2007). For the concentrations, it is set to 10 %. Although the optimized emissions are not strongly sensitive to the choice of the initial error after some assimilation cycles (e.g. several weeks) because of the analysis applied for both the mean and spread fields, convergence is generally attained faster in the case for larger initial uncertainties.

10 3.3.3 Observation error

The observation error covariance matrix contains the measurement error provided by each retrieval. The representativeness error is also considered for the OMI NO_2 and MOPITT CO super-observations as in Miyazaki et al. (2012). The off-diagonal components are neglected for MLS data; the observation error of one measurement is as-

- ¹⁵ sumed to be independent of the observation error of other measurements. For TES O₃ and MOPITT CO data, the full error covariance is used, including correlations between vertical layers. We also account for the influence of the averaging kernels from the instruments, which captures the vertical sensitivity profiles of the retrievals. The horizontal correlation in the observation error covariance matrix is neglected. We do not other measurements are precised before exciting the encounter of the averaging kernels from the instruments.
- attempt to remove possible biases from the observations before assimilation, mainly because of the difficulty in estimating the true bias structure; this will be further discussed in Sect. 5.1.2.

3.3.4 Assimilation parameters

Since the DOF of the state vector employed in this study is large, a large ensemble size is essential to capture the proper background error covariance structure, but at the expense of an increased computational cost. We have optimized the data assimilation

parameters based on sensitivity experiments. The observation-minus-forecast (OmF) analysis (see Sect. 5.1.1) was used to choose the best value of the ensemble size and localization length, as summarized in Table 4. The sensitivity experiment showed that the analysis is improved significantly by increasing the ensemble size from 16 to 32

- and is further somewhat improved by increasing it from 32 to 48, as seen in the OmF reduction in the comparison, for instance, with MOPITT CO, MLS O3, and MLS HNO₃ data. In contrast, the impact was much less significant by increasing it from 48 to 64. The ensemble size is accordingly set to 48. The sensitivity experiments also show that the analysis results are sensitive to the localization length. The inclusion of spatial cor-
- 10 relations with appropriately chosen correlation lengths leads to improvements. From the sensitivity experiments, the localization length was set to 450 km for NO_x emissions and 600 km for CO emissions, lightning NO_x, and the concentrations. Too short localization length (i.e. half size) increases the OmF error, for instance, for MOPITT and MLS data, because of the neglected influence of remote observation information.
- ¹⁵ Although the larger localization length (i.e. double size) somewhat reduces the OmF for some cases, we use the above-mentioned setting to avoid possible serious spurious correlations. The optimal length, however, may depend on the location, season, species, and model resolution (Pajot et al., 2011), reflecting the chemical lifetime of the species and atmospheric wind patterns.

20 4 Observing system experiments

Observation system experiments (OSEs) are used to study how each individual observational data set improves the overall performance. We have conducted five OSEs by separately assimilating OMI NO₂, TES O₃, MOPITT CO, MLS O₃, and MLS HNO₃ data, and the results are compared with the control run (without any assimilation) and the full assimilation run (with all the data).

4.1 Background error covariance

The background error covariance estimated from ensemble simulations allow unobserved species to be constrained by observed species. Inter-species adjustment can be expected when observed and unobserved species chemically interact on a time scale of the order of the assimilation cycle. The background error covariance follows

scale of the order of the assimilation cycle. The background error covariance follows from the assumption that the background ensemble perturbations X^b sample the forecast errors,

 $\mathbf{P}^{\mathsf{b}} = \mathbf{X}^{\mathsf{b}} (\mathbf{X}^{\mathsf{b}})^{\mathsf{T}}.$

Figure 3 shows the simulated global mean background error covariance structure, **P**^b.

- ¹⁰ The covariance analysis shows tight correlations between variations in surface emissions and low-level concentrations of chemically-related species. NO_x emissions show strong positive correlations with low-level (950 hPa) concentrations of NO_x (r = 0.66), O₃ (r = 0.60), N₂O₅ (r = 0.69), HNO₃ (r = 0.62), and HNO₄ (r = 0.59), whereas its relation to upper-level (500 hPa) concentrations is much less significant. CO emissions
- ¹⁵ have a significant correlation with the lower tropospheric CO concentration (r = 0.74), but does not relate to other species obviously. Because of the time delays associated with vertical mixing, the middle tropospheric CO is generally delayed in phase, with less variability associated with the CO emission variability. Positive correlations are found between lightning NO_x sources and concentrations of O₃ (r = 0.18) and NO_y species (e.g. r = 0.30 for NO_x) in the middle troposphere, demonstrating the potential
- to constrain lightning NO_x sources from those observations. Note that correlations with lightning NO_x sources are more robust in the tropics (r = 0.30 for O₃ and r = 0.36 for NO_x between 25° S and 25° N) than the global mean (the above-mentioned).

The background error covariance shows significant correlations among the concentrations of related chemical species, reflecting the complex tropospheric chemical processes. For instance, O₃ shows large correlations with NO_y species, CO, CH₂O, SO₄, and PAN at low levels (with r > 0.30). NO_x shows a similar covariance structure, reflecting strong chemical links between O₃ and NO_x (with r = 0.41) both in the lower and

(6)

CC ①

middle troposphere. There are large correlations among the hydrocarbons throughout the troposphere.

The background error structure strongly depends on the model characteristics, and it may have a critical effect on the data assimilation performance. In complex chemical data assimilation systems, a realistic estimation of the background error distribution is very important, given the noisy observations along with imperfect model predictions, as suggested by Singh et al. (2011).

4.2 Results

The OSEs confirm that the assimilation of each species data set has a strong influence
 on both assimilated and non-assimilated species through the use of the inter-species error correlation and through the chemical coupling provided by the model forecast. O₃ and CO variations in the free troposphere are mostly dominated by assimilation of TES O₃ and MOPITT CO data, respectively. The changes in NO₂ from the data assimilation are predominantly due to the OMI NO₂ data. The assimilation of OMI NO₂ data
 also provides some changes in O₃ and CO concentrations, whereas the assimilation of TES O₃ data has some effects on NO₂ fields, with typically less than a 10 % contribution to the total change. These changes are tightly associated with the changes in OH because of the chemical interactions in the CO-OH-NO_x system, as depicted in Fig. 4. The assimilation of OMI NO₂ data generally increases OH concentrations in the
 tropical troposphere by 5–15 % and decreases it in the extratropics by 10–20 %. These

- ²⁰ tropical troposphere by 5–15% and decreases it in the extratropics by 10–20%. These changes correspond to the increased (decreased) NO_2 concentration in the tropics (in the extratropics) through NO_x -OH-O₃ chemical reactions in the NO_x -sensitive regime. The assimilation of TES O₃ data also significantly changes OH concentrations. The obtained O₃ increment results in a 10–20% increase in OH concentration in the extra-
- tropics. As a result of the combined assimilation of all satellite data sets, zonal mean OH concentration is increased by 5–15% in the tropics and the Southern Hemisphere, and the north-to-south gradient in OH concentration in the free troposphere is reduced in July.

The OSEs quantify the improvement due to the assimilation of each individual species data set in comparison with the assimilation of all data sets and the control run without assimilation. The global spatial correlation, root-mean-square-error (RMSE), and mean bias for 15-days (from the 16th to the 30th of each month) mean fields were estimated for the control run and the OSEs. The improvement rate due to each data set was then estimated by comparing scores between the control run and the OSE , as shown in Fig. 5. For the RMSE and bias, the error reduction rate is estimated by comparing these statistics between the control run (E_{cntl}) and the OSE (E_{OSE}) as follows,

$$\frac{|\mathcal{E}_{\text{cntl}}| - |\mathcal{E}_{\text{OSE}}|}{|\mathcal{E}_{\text{cntl}}|} \times 100.$$

10

When the global mean model bias is nearly zero, the error reduction rate is not meaningful and is set to zero. This is done for the comparisons with TES O_3 data at 700 hPa in January, TES CO data at 700 hPa in July, and ozonesonde data between 450 and 200 hPa in July. The nearly zero bias compared to TES O3 and CO data at 700 hPa can be largely attributed to the very small sensitivity of the retrievals at these levels, and does not reflect the true model bias which may be large.

The comparison demonstrates significant improvements of the scores obtained by the assimilation. Improvements in the non-assimilated chemical species show that the ensemble simulation is capable of correctly representing inter-species error correla-

- ²⁰ tions and propagating observation information through assimilation cycle. For instance, the assimilation of MLS O₃ and HNO₃ data leads to an improved agreement with OMI NO₂, as shown by the large reduction of the bias. Furthermore, all the assimilated data sets improve the agreement with O₃ profiles obtained from ozonesondes in July, as will be further discussed in Sect. 5.1.2.
- Note that the effect of the data assimilation on non-observed species is not always positive. Consideration of inter-species error correlations sometime causes the error to grow. Optimization of the state vector structure is thus conducted to minimize the error

(7)

based on the OSEs, by neglecting the inter-species correlations that result in serious error growth; the optimized state vector is depicted in Fig. 2. Serious negative effects arose, for example, from the TES O_3 data assimilation on CO fields, the MLS HNO₃ data assimilation on CO fields, the OMI NO₂ data assimilation on O₃ fields, and the MO-

- ⁵ PITT CO data assimilation on O₃ fields (figure not shown). This is primarily because limited ensembles can cause spurious error correlation among chemical species, especially for species having insignificant chemical links. For instance, because of its relatively long chemical lifetime (~2 months), CO may not have significant correlations with chemically active species such as O₃ in the lower troposphere with a time scale on
- the order of the data assimilation cycle. Similarly, the OMI NO₂ tropospheric columns may not have enough information to directly constrain the vertical profile of O₃ because of its smooth averaging kernel profile and large observation error. Since we applied the variable localization to avoid these negative influences (see Sect. 3.3.1), the full assimilation run provides the best performance among the individual data assimilation in most cases, see Fig. 5. Note that all the observation data can affect all the chemical
- ¹⁵ most cases, see Fig. 5. Note that all the observation data can affect all the chemica fields throughout the forecast.

5 Data assimilation results

5.1 Validation

5.1.1 Self-consistency tests

²⁰ An important test for the quality of data assimilation is whether the differences between the model forecast and observations (the innovations) are consistent with the covariance matricies for the model forecast and observations (e.g. Segers et al., 2005; Lahoz et al., 2007). The background covariance matrix is important in reaching an appropriate balance between the background and the observations. A quantitative criterion for the choice of the background error is the chi-square (χ^2) diagnostics (e.g. Ménard and

Chang, 2000). χ^2 should approach 1 if the background error covariances are properly specified, while a value higher (lower) than 1 indicates an underestimation (overestimation) of the background error covariance matrices. The χ^2 determined for each assimilated data set is shown in Fig. 6. The χ^2 is greater than 1 for the MLS O₃ and HNO₃ data assimilation, indicating too much confidence in the model. The model over-confidence is associated with the limited lower stratospheric variations in the ensemble, which are strongly constrained by the fixed upper boundary conditions in CHASER. For MOPITT CO and TES O₃ data assimilation, χ^2 lower than 1, which indicates a possible overestimation of the background errors, may result in too much correction of the model fields.

Figure 7 shows the latitude dependence of the bias and root-mean-square (RMS) innovation of the OmF computed in the observation space. The innovation between forecast and assimilated data is a sum of three contributions; the observation error, the forecast error, and the representativeness error caused by mismatches between the satellite ground pixel and the model grid cell (Eskes et al., 2003; Lahoz et al., 2007). A persistent model bias is found in the underestimation of tropospheric NO₂ columns compared to OMI NO₂ data, the overestimation of the middle tropospheric CO in the extratropics compared to MOPITT CO data, and the overestimation in the middle and upper tropospheric O₃ compared to TES and MLS O₃ data. The data assimilation re-

- ²⁰ moves most of the OmF bias. The large reduction of the O_3 OmF bias for TES O_3 data in the middle and upper troposphere implies that TES O_3 has meaningful information for constraining the O_3 fields at these altitudes, as similarly reported by Parrington et al. (2008). In contrast, the bias reduction is not obvious in the lower troposphere (800–500 hPa), especially at high latitudes. This is because the DOFs of the TES retriguel in the transponders are generally employed by the transpondent of 45° and TEC has little
- ²⁵ trieval in the troposphere are generally smaller than 1 poleward of 45° and TES has little sensitivity to the lower tropospheric O₃ (Worden et al., 2004; Osterman et al., 2008). The near zero OmF bias for MLS O₃ in the data assimilation reflects a good coverage and high quality of MLS O₃ data. A long lifetime of O₃ in the UTLS also helps to accumulate the observation information. The observation-minus-analysis (OmA) histogram

shows a more pronounced peak than that for OmF (closer to a Gaussian curve, figure not shown) in many cases, as the analysis is closer to the assimilated observations than to the forecast, as shown by Miyazaki et al. (2012).

The standard deviation about the mean of the OmF was found to be mostly equal to the observation error, indicating that the data assimilation captures the observed variability well and satisfies the data assimilation assumptions. A substantial part of the RMS of the OmF has been removed by the data assimilation for MOPITT CO, MLS O₃, and TES O₃ in the middle and upper troposphere. A reduction of the RMS is less pronounced for OMI NO₂, TES O₃ in the lower troposphere, and for MLS HNO₃. These are, respectively, related to rapid spatiotemporal variations and large errors in the observed NO₂, small sensitivities to the true profile (i.e. small averaging kernel), and large observation errors.

5.1.2 Comparison with satellite data

The data assimilation results are validated against independent data, as listed in Ta ble 5 and shown in Fig. 5. The tropospheric NO₂ columns are compared with GOME-2, SCIAMACHY, and OMI data. Differences among the retrievals mainly reflect diurnal variations of chemical processes and emissions, because a very similar algorithm is used for the retrieval of these data. The viewing pixel size difference will not affect the comparison results too much, since these retrievals are gridded to the same resolution
 (2.5° × 2.5°), using weighting factors for the surface overlap between the satellite pixel and grid coll. The data assimilation largely improves the agreement with these data.

- and grid cell. The data assimilation largely improves the agreement with these data. The improvement is most pronounced in January. The data assimilation increases the spatial correlation by about 0.15–0.21, decreases the bias by about 85% (except for SCIAMACHY), and decreases the RMSE by about 30%. These improvements are
- mainly attributed to the increased NO₂ columns over East China and Central Africa and the decreased columns over Europe (Fig. 8). The OSEs confirm that these improvements are mainly due to the OMI NO₂ data assimilation (Fig. 5). The assimilation of MLS O₃ and HNO₃ data also contributes significantly to the reduction of the negative

 NO_2 column bias compared to OMI and GOME-2 (in January only) data, by increasing the upper tropospheric NO_2 concentration. In contrast, the bias compared to independent GOME-2 (in July only) and SCIAMACHY data is increased by the data assimilation. The errors in the simulated diurnal NO_2 variations along with a bias between OMI

and these retrievals may cause the bias to increase. The diurnal variations are especially important in the warmer seasons (e.g. in July in the Northern Hemisphere), when chemistry is sufficiently fast to make a difference between morning and early noon NO₂ columns (Boersma et al., 2009).

The comparison against the MOPITT CO shows significant improvements due to the
 data assimilation. The global mean negative bias and large RMSE in the model simulation are mostly (by 40–90 %) removed by the data assimilation, while a very high spatial correlation (0.92–0.97) is maintained. The reduced negative bias is primarily due to the enhanced concentrations over East Asia, North America, and northern Eurasian continent (Fig. 10). Because of the long lifetime of CO, the data assimilation system is able
 to capture the observed CO variability. This improvement is mostly achieved by the MO-PUTT CO data assimilation, while the assimilation of other data sole slightly. (typically, the second second

PITT CO data assimilation, while the assimilation of other data sets slightly (typically less than 5%) affected the comparison through their influence on the OH fields.

The data assimilation also improves the spatial correlation with the independent TES CO data both at 700 and 300 hPa by about 0.07, reflecting enhanced concentrations

- over China, India, Central Africa, and North America, and reduced concentrations over South America (Fig. 10). However, the global mean bias and RMSE mostly increases due to the data assimilation, primarily reflecting too high concentrations at high latitudes. The bias increase is possibly due to a systematic bias between MOPITT and TES. Luo et al. (2007) showed that MOPITT CO version 3 data are larger than TES CO
- version 2 data, with a mean difference of -4.8% at 150 hPa and -0.2% at 700 hPa. This result is consistent with our data assimilation result, but with different data versions. The assimilation of other species (i.e. non-CO) data contributed slightly to improve the agreement.

The data assimilation greatly improves the agreement with the TES O_3 data in the upper troposphere (300 hPa), with a spatial correlation increase of up to 0.06, a bias reduction of up to 65 %, and an RMSE reduction of about 40–50 %. The improvements are mainly due to increased concentrations in the southern extratropics (Fig. 9), which

- ⁵ are achieved by the TES O₃ and MLS O₃ data assimilation. The comparison against the lower tropospheric (at 700 hPa) TES O₃ fields shows much less improvement, because of the low sensitivity of TES to lower tropospheric O₃. The TES O₃ sensitivity is reduced greatly in the lower troposphere especially due to the presence of clouds and makes it difficult to improve the analysis. The assimilation of OMI NO₂ data acts to
- reduce the bias compared to TES O₃ data at 700 hPa in July, implying the importance of optimizing O₃ precursors fields. However, the impact is not significant in the simultaneous data assimilation fields. It must be also noted that validation or assimilation is virtually meaningless when the retrieval sensitivity is very low. Since we applied the averaging kernel and the a priori profile information in the comparison (Eq. 1), substantial adjustments in the assimilation or differences in the validation only occur when there is
- a meaningful signal (i.e. the retrieved profile minus the retrieval a-priori).

The data assimilation also greatly improves the agreement with MLS O_3 data, mostly due to the assimilation of the MLS O_3 data itself. The MLS data assimilation is very effective in removing the positive model bias in the UTLS because of its wide and dense

- ²⁰ coverage and good quality, as similarly shown by Jackson (2007); Feng et al. (2008). The global RMSE against MLS O_3 data is also reduced by TES O_3 data assimilation (by 5–25%). However, the OSEs confirmed that the assimilated concentration becomes too high because of the TES O_3 assimilation compared to MLS O_3 data. The OSEs suggest that TES O_3 concentration is higher (lower) in the tropics (extratropics) than
- ²⁵ MLS O₃ concentration, with a mean difference of 20–40 ppb at altitudes between 200 and 80 hPa. For future studies it is important to apply a bias correction to remove systematic bias between different data sets in order to provide consistent constraints.

The bias and the RMSE compared with MLS HNO_3 data have also been largely removed by the data assimilation, by about 70–85% and 40–45%, respectively. The

improvement is primarily due to MLS HNO₃ data assimilation, but MLS O₃ data assimilation also contributes to the improvement, as seen in reduced HNO₃ bias. This indicates that MLS O₃ data have meaningful information about the abundance of HNO₃ in the UTLS, through atmospheric transports and the chemical link. In contrast, the decreased (increased) spatial correlation (RMSE) due to the MLS O₃ data assimilation may be related to errors in the background error covariance or poor data quality either in MLS HNO₃ or MLS O₃ data, especially in the upper troposphere.

The data assimilation improves the spatial correlation (~0.04) and the RMSE (by 20–35%) compared to TOC data obtained from the independent MLS/OMI data. The improvement is mainly attributed to the assimilation of TES O_3 data because of their strong sensitivity to tropospheric O_3 in the tropics. For instance, the high columns over the Atlantic and in the southern subtropics (from South Africa to Australia) are better captured by the data assimilation (Fig. 9). The data assimilation also removes the

- positive model bias (about 70%) in January. However, the data assimilation still has difficulty in reproducing the observed features. For instance, longitudinal variations with a persistent wave-1 pattern in the southern tropics are larger in both the model and assimilation compared to the OMI/MLS product. This may indicate a difficulty in correcting processes responsible for the enhanced ozone in the Atlantic (e.g. via rapid convective updraft). At the same time, there is large uncertainty in the retrieved TOC. Measuring
- ²⁰ tropospheric O_3 from space is challenging because of large amount of stratospheric O_3 in the total column, while the separation between the troposphere and stratosphere strongly depends on the tropopause definition.

5.1.3 Comparison with ozonesonde data

5

Figure 11 shows the comparison against the ozonesonde data. Without assimilation the global mean bias with the ozonesonde is large, up to 30% in the free troposphere and 40% in the lower stratosphere. The data assimilation removes most of the bias from the middle troposphere to the lower stratosphere, down to within 10%. It also reduces the RMSE by about 20% in the middle troposphere and by 50% in the UTLS.

Significant positive biases in simulated O_3 in the UTLS are also mostly removed by the data assimilation, whereas the simulated O_3 profiles suffer from errors in stratosphere-to-troposphere exchange (STE). The great improvements in the UTLS reflects the long chemical lifetime of O_3 and the fact that satellite retrievals capture the large scale vari-

- ⁵ ations of O₃ well. The most pronounced corrections in the simulated O₃ is found in the tropics in January and in the Southern Hemisphere in both January and July in the UTLS. The effect of the data assimilation on the lower tropospheric O₃ below about 850 hPa is not obvious on a global scale, implying that further constraints are needed on the near surface O₃ and its precursors (e.g. VOCs). Parrington et al. (2009) demon-
- strated that the changes in the O_3 flux from the free troposphere into the planetary boundary layer (PBL) by the TES O_3 assimilation reduces the positive bias in the PBL indirectly over North America. Although this effect is not confirmed by our global analysis, it is of interest to survey the detailed spatial distributions resulting from the data assimilation.
- ¹⁵ The OSEs demonstrate that these improvements are mainly due to the assimilation of TES data in the free troposphere (between 750 to 200 hPa) and both TES and MLS O_3 data in the UTLS (between 200 and 90 hPa). TES data provide valuable constraints on the free tropospheric O_3 . Although the MLS data do not extend down to altitudes below 260 hPa, the MLS assimilation influenced the ozone analysis even below this
- ²⁰ level through the vertical propagation of the observation signal mainly via the extratropical downward motion. It is emphasized that all the assimilated datasets contribute to reduce the global mean bias between 750 and 450 hPa and and between 200 and 90 hPa in July. This indicates that the simultaneous assimilation of multiple chemical observations is effective to improve tropospheric O₃, by their influence on the precur-
- sor emissions and chemical processes that affect the O_3 concentrations. In contrast, the improvement by the non- O_3 data assimilation is not obvious in January. This may reflect the seasonal difference in the chemical links between O_3 and other species. Since the most ozonesonde sites are located in the Northern Hemisphere, the greater improvement in July may be related to summertime active chemical processes in the

Northern Hemisphere. Much less ozone is produced from the precursors in winter than in summer.

The assimilated O_3 fields show a persistent positive bias compared to the ozonesonde data, with a global mean bias of up to 15%, below 300 (500) hPa in Jan-

- ⁵ uary (July). The OSEs demonstrate that the positive bias can be attributed to the assimilation of TES O_3 data. The positive bias in TES O_3 data compared to ozonesonde data is reported by Nassar et al. (2008) and Worden et al. (2009). A data assimilation with a bias correction (a uniform 3.3 ppbv bias above 500 hPa and a 6.5 ppbv below 500 hPa, according to Worden et al., 2009) reduces the negative bias in the data assimilation (Fig. 12), demonstrating the importance of bias correction before data as
- assimilation (Fig. 12), demonstrating the importance of bias correction before data assimilation. However the effect of bias correction is not always positive, causing too low concentrations in the middle troposphere in both January and July. A more accurate estimation of the spatially-varying bias is thus required to improve the analysis.

5.1.4 Comparison with aircraft data

- ¹⁵ Comparisons with aircraft measurements from the INTEX-B campaign allow us to look into the effect of data assimilation on various chemical fields (Fig. 13). The observed NO_x concentrations show a decrease from the boundary layer to the free troposphere. Oxidation of NO_x to HNO_3 and other minor products dominates NO_x loss in the boundary layer, whereas conversions to HNO_3 and PAN dominate it in the free troposphere
- ²⁰ (e.g. Staudt et al., 2003). The increase in HNO₃ toward the surface is driven by chemical production of HNO₃ in polluted areas, while HNO₃ is depleted in the troposphere because of deposition processes. Compared to the observed profiles, the simulated NO₂ is slightly lower in the boundary layer and too low in the free troposphere, while HNO₃ is too high by 500 pptv in the boundary layer. Observed PAN shows a maximum
- ²⁵ above the boundary layer and a minimum in the free troposphere, while the simulation overestimates (underestimates) it by 80 pptv (by 200 pptv) in the boundary layer (the upper troposphere). Observed O_3 shows a maximum near 900 hPa and decreases toward the lower free troposphere, while the simulation slightly underestimates it, except

near the surface. Observed HO₂ and CH₂O decrease with altitude, reflecting the decrease in water vapor (Heikes, 1992) and the boundary layer source from oxidation of isoprene (Millet et al., 2006), respectively. The simulation captures the observed features of CH₂O well, but overestimates HO₂ by 10 pptv throughout the troposphere.

- ⁵ The data assimilation improves the agreement with the aircraft observations for NO₂, O₃, and PAN. Underestimations of these species concentrations are generally reduced by the data assimilation. Chemical production of O₃ is strongly related to the abundance of NO_x and OH. The NO_x emissions tend to increase OH via the NO and HO₂ reaction and the O₃ (and excited oxygen atoms) and H₂O reaction, while the CO emis-
- ¹⁰ sions tend to decrease OH. Corresponding to the increased NO_x emissions and decreased CO emissions at low latitudes, the data assimilation increases OH and O₃. Because of the low sensitivity of TES in the lower troposphere, the changes in near surface O₃ are largely attributed to the change in NO_x emissions (Miyazaki et al., 2012). Even in the free troposphere, the O₃ analysis could be significantly affected by the ¹⁵ emission changes along with in situ adjustment by the TES data assimilation.
- The assimilated fields still underestimate the concentrations of NO and PAN in the free troposphere, and overestimate HO_2 throughout the troposphere. Martin et al. (2007) concluded that oxidation of lightning NO_x explains nearly 80 % of the HNO₃ concentration in the tropical upper troposphere. Increasing the lightning NO_x source also decreases HO_2 in the upper troposphere, while increasing OH (Hudman et al., 2007). The increased NO_x results in a reduction of the HO_2/OH ratio through the $NO + HO_2$ and $NO_2 + HO_2$ reactions, and also results in an increased loss of OH via production of HNO_3 (DeCaria et al., 2005). Thus, it is likely that more NO_x sources in the free troposphere are required to reduce the negative bias of NO_2 , NO, PAN, and HNO₃ and
- the positive bias of HO₂ in the free troposphere. The overestimated H₂O may also contribute to the overestimation in the concentrations of OH and other HO_x species through its reaction with excited oxygen atoms. The data assimilation tends to increase the overestimation in HNO₃ concentration in the boundary layer, corresponding to the increased NO₂ concentration. Simultaneous adjustments for its removal processes (e.g.

wet and dry depositions) might be important to further improve the analysis. Removal of HNO₃ by wet deposition processes occurs within a few days in the lower troposphere and results in the loss of HO_x species, which may also explain a part of the overestimation in HO_x species concentrations. Meanwhile, a large uncertainty in both observed and simulated OH concentrations in the free troposphere remains an important issue (e.g. Hudman et al., 2007).

5.2 Estimated emission sources

The simultaneous optimization of multiple species leads to complex chemical interactions which together determine the estimated emissions. Especially, the imperfect representation of OH fields may cause large uncertainties in the NO_x and CO emissions inversion (Müller and Stavrakou, 2005; Jones et al., 2009; Pison et al., 2009; Hooghiemstra et al., 2011). Müller and Stavrakou (2005) demonstrated that the optimization of CO emissions constrained by both CO and NO₂ observations leads to a better agreement between modeled and observed values, through the chemical response of the CO-OH-NO_x-NMHC system to emission changes. Jones et al. (2009)

also suggests that neglecting the influence of NO_x emission changes. Jones et al. (2009) could contribute to a significant bias in the CO source estimates.

In our system, as shown in Figs. 4 and 5 and discussed in Sect. 4.2, all the assimilated data significantly influence concentrations of OH, NO_2 , and CO. The assimilation

- of OMI NO₂ data generally increases (decreases) the OH concentration in the tropics (extratropics) by 15 %, which affects the atmospheric CO lifetime and influence the CO emission inversion. Meanwhile, the higher CO emissions lead to a decrease in OH abundances and slightly increases NO₂ concentration in the extratropics. The simultaneous data assimilation thus provides comprehensive constraints on the emission
- inversion. The a priori and a posteriori emissions estimated from data assimilation are shown in Fig. 14 and listed in Table 6, 7, and 8. Note that the a priori surface emissions for the simulation years 2006–2007 were obtained by linearly temporal extrapolating the 1995 and 2000 inventories.

5.2.1 NO_x emissions

The data assimilation changes the global total NO_x emissions from 42.8 to 42.9 TgNyr⁻¹ in January and from 46.7 to 52.0 TgNyr⁻¹ in July. The a posteriori and the a priori emissions differ more significantly at the regional scale. The analysis in-⁵ crement is generally positive over Eastern China, North America (only in January), Australia, Northern India (only in January), Southeast Asia, and Southern Africa. An obvious increment is observed over Eastern China, with a factor of up to about 1.6 in January. Over the Eastern US, the a posteriori emissions are higher than the a priori emissions in January, but are lower in July. The a posteriori emissions are lower than the a priori emissions over Europe, unlike over other industrial areas. Over Central 10 Africa, the data assimilation increases the emissions in January. Over Northern Africa, the data assimilation decreases the emissions in January, but increases the emissions in July. Most of these features are also reported in Miyazaki et al. (2012). The analvsis increment structures obtained from the data assimilation strongly depend on the assumption made on the a priori emission. In CHASER, the 1995 and 2000 emis-15 sion inventories are extrapolated to the simulation years 2006–2007. This procedure may give spurious results for certain regions, as described in Miyazaki et al. (2012). However, the bottom-up emissions obtained from the newer inventories (EDGAR version 4.2 (European Commission, 2011), GFED version 3.1, and GEIA) for the year 2007 show a similar difference with the a posteriori emissions. This indicates common 20 problems in the emission inventories (e.g. too little emissions over Eastern China, the Eastern US in January, Central Africa in January, Northern Africa in July, and Southern Africa in January, and too much emissions over Europe in January, the Eastern US in July, South America in July). Note that the a posteriori emissions are closer to

the newer inventories than the a priori emissions in some cases (e.g. over the Eastern US, Eastern China, Europe, and Southeast Asia). In particular, the a priori emissions in Spain are unrealistically high, which are very different from both the a posteriori emissions and the newer inventories.

The simultaneous data assimilation system results in NO_x emissions somewhat different from the emission inversion system in which only surface emissions are optimized (brackets in Tables 6 and 7). This indicates that the direct adjustment to the concentration fields by the data assimilation provides important effects upon the emis-

- sion inversion, with a regional difference of up to 40% over industrial areas and up to 30% over biomass burning areas. For instance, the emissions over Central Africa in the simultaneous data assimilation are smaller than in the emission inversion, which is attributed to the increased NO₂ concentration in the middle and upper troposphere mainly due to the assimilation of TES O₃ data. The smaller emissions over the Eastern US for July in the simultaneous data assimilation results from the larger NO₂ concentration.
- trations in the middle and upper troposphere, primarily by the adjustment made directly to the concentrations due to the assimilation of OMI NO_2 data.

The January and July mean global surface NO_x emissions of 47.4 TgNyr⁻¹ estimated from the data assimilation is slightly larger than the annual mean emissions estimated from previous studies (e.g. 42.1 TgNyr⁻¹, Müller and Stavrakou, 2005, 40.3 TgNyr⁻¹, Jaeglé et al., 2005, 45.4 TgNyr⁻¹, Miyazaki et al., 2012). Differences in analysis years and the focus on only two months may primarily contribute to the difference in NO_x emission estimates. The NO_x emissions are generally larger over industrial areas in winter and over soil/desert areas in summer than in other seasons; this may also contribute to the larger NO_x emissions estimated from this study compared to the annual mean emissions. Meanwhile, the comparison against the January and July mean a priori emissions (44.7 TgNyr⁻¹) and the newer inventories (40.4 TgNyr⁻¹) implies general underestimations in the emission inventories. On the regional scale, the 11.0 TgNyr⁻¹ estimated over East Asia (80–150° E, 10–50° N) for July 2007 from OMI

observations (Zhao and Wang, 2009) is comparable to our estimates of 10.2 TgNyr⁻¹. The 0.465 TgN estimated over the Eastern US (102–64° W, 22–50° N) from the OMI observations for March 2006 (Boersma et al., 2008a) is also comparable to our estimate of 0.485 TgN.

5.2.2 CO emissions

Because of the long chemical lifetime of CO in the troposphere, the CO emission inversion requires an assimilation cycle with a long assimilation window (i.e. by using the 4D-Var assimilation technique) in order to obtain enough constraints from observa-

- tions. The CO emissions estimated from this study, based on one-month calculation, may not have been sufficiently constrained by the observations. Further, the simultaneous data assimilation corrects the CO concentrations from the MOPITT data obtained at the 9 pressure levels and at the surface, whereas the emissions are optimized using the data only obtained at 700 hPa (see Sect. 2.1.3). Consequently, the simultaneous
- data assimilation system can start by adjusting concentrations, and then the emissions will adjust more slowly, depending on the averaging kernel profile and the DOFs. The estimated CO emissions are thus more strongly constrained by the observations in the emission inversion run than in the full assimilation run. Therefore only the CO emissions estimated by the emission inversion system are presented, as depicted in Fig. 14
- and listed in the brackets in Tables 6 and 8.

CHASER shows a large underestimation in the simulated CO fields in the northern extratropics, as commonly revealed by many CTMs (Shindell et al., 2006). Corresponding to the underestimated CO fields, the assimilation of MOPITT data largely increases the surface CO emissions in the northern extratropics both in January (+66%) and

- July (+25%). The large increase in the CO emissions are mainly attributed to the increase over industrial areas, especially over East China in the both seasons with a factor of 2–3. The large positive increment is consistent with the results of Arellano et al. (2004), who showed that anthropogenic emissions over Asia are too low in EDGAR v3.2. The decreased emissions over North Africa and the increased emission
- over Australia and South Asia (especially in January) are also consistent with recent estimates (Jones et al., 2009; Fortems-Cheiney et al., 2011). The large increments obtained for Central and North Africa indicate a large uncertainty in biomass burning in the GFED2 inventory, as similarly suggested by Kopacz et al. (2010). The larger emissions

in winter than in summer in the US, Europe, and East Asia are also commonly revealed from recent inversions, which could be due to a combination of emissions from residential heating and vehicle cold starts (e.g. Kopacz et al., 2010). Our a posteriori January and July mean estimate for the surface CO emission is 1393 Tgyr⁻¹, which is about 20% higher than the a priori emissions, mainly due to increased emissions by up to 60% in the Northern Hemisphere in January. This is within 10% of the results from previous estimates of 1342–1502 TgCOyr⁻¹ (Arellano et al., 2004; Arellano and Hess, 2006), 1390 TgCOyr⁻¹ (Hooghiemstra et al., 2011), 1391 TgCOyr⁻¹ (Pison et al., 2009), 1393 TgCOyr⁻¹ (Kopacz et al., 2010), 1440 TgCOyr⁻¹ (Jones et al.,

¹⁰ 2009), 1504 TgCOyr⁻¹ (Fortems-Cheiney et al., 2011). The a posteriori emissions are also much larger than the newer inventories (with the January and July mean global emission of 892 TgCOyr⁻¹).

5.2.3 Lightning NO_x sources

The data assimilation provides strong constraint on the magnitude and the distribution
 of LNO_x. The global LNO_x amount is increased from 4.4 to 5.2 TgNyr⁻¹ in January and from 5.7 to 7.3 TgNyr⁻¹ in July. The estimated emissions are within the range of the annual global LNOx source of 5±3 TgNyr⁻¹ by Schumann and Huntrieser (2007). The large increase in July corresponds to the significant increase over the Eurasian continent, North America, Southeast Asia, the tropical South America, and Central Africa.
 The data assimilation also changed the vertical profile of the LNO_x sources both in

- ²⁰ The data assimilation also changed the vertical profile of the LNO_x sources both in the tropical and extratropics. The large changes in the three-dimensional distribution of LNO_x obtained from the data assimilation indicate that the Price and Rind (1992) lightning parameterization used in the simulation does not fully capture the observed distribution of lightning activity, as also suggested by Allen and Pickering (2002). In
- ²⁵ particular, the data assimilation generally increases LNO_x in the upper troposphere both in the tropics and the extratropics. This suggests that the C-shape vertical profile of lightning NO_x assumed in the parameterization may place too much mass near the surface and too little in the middle troposphere, as also suggested by Ott et al. (2010).

Especially, TES O₃ and OMI NO₂ data provided particularly strong constraints on LNO₄ sources. However, a lightning signal in satellite observations of NO₂ columns is often obscured by the high contributions from (anthropogenic) boundary layer pollution and biomass burning (Martin et al., 2002, 2007; Boersma et al., 2005). Also the increase 5 of the NO/NO₂ ratio with height in the troposphere reduces the relative sensitivity to lightning produced NO₂. The lightning signal is also almost comparable to the measurement uncertainty for tropospheric NO₂. Thus, further careful considerations are required for LNO_x estimates, which will be discussed in a separate study.

As a result of the simultaneous optimization of the emissions and the concentrations, the global tropospheric O_3 burden, which is calculated for the region below the 10 tropopause height determined from the vertical temperature gradient (-2 K km^{-1}) in the model, is decreased by 2.5% in January and is increased by 5.6% in July (Table 9). The obvious increase in July, from 346.8 to 366.1 TgO₃, is almost equally attributed to the enhanced emissions of the precursors and the direct adjustment to the concentration fields. The simultaneous optimization provides important contributions to the 15

tropospheric ozone budget analysis, by optimizing its precursor emissions and reducing model errors while taking the chemical feedback into account.

Uncertainties 5.3

The EnKF data assimilation provides information about the uncertainty of the analysis.

The ensemble spread, estimated as the standard deviation of the simulated concentra-20 tions across the ensemble, is a measure of the analysis uncertainty (e.g. Arellano et al., 2007). The uncertainty in the a posteriori fields represented by the analysis spread is reduced if the analysis converges to a true state. This spread is caused by errors in the model input data, chemical or physical parameters, parameterizations, the numerical scheme as well as errors in the measurements assimilated (Boynard et al., 2011). 25

Figure 15 shows the distributions of the analysis spread for O₃, CO, and NO₂. The analysis spread typically shows a reduction of the analysis errors due to effective (high quality, high sensitivity, good coverage) observations and an increase due to error

ACPD

12, 16131-16218, 2012

growth as represented by the ensemble model forecast and the covariance inflation. Near the surface, the analysis spread of O_3 and CO is generally smaller in the tropics than in the extratropics, corresponding to the latitudinal dependence of TES O_3 and MOPITT CO retrieval sensitivities, respectively. The vertical profile shows that the

- analysis spread is effectively reduced in the middle troposphere, reflecting the maximum sensitivity of the retrievals at these altitudes. Within the free troposphere, the O₃ analysis spread is relatively high in the tropical upper troposphere. The OSEs showed that the assimilation of MLS HNO₃ data acts to increase the O₃ analysis spread in the tropical upper troposphere during the forecast, through its influence on the NO_y
- ¹⁰ species fields during the analysis and because of its large observation errors. In the extratropical upper troposphere and around the subtropical jet streams, the downward propagation of the well constrained O_3 due to the assimilation of MLS O_3 data helps to reduce the analysis spread. The CO analysis spread is maximum at the northern mid-latitudes near the surface, related to large uncertainties in the analyzed CO emis-
- ¹⁵ sions. The analysis spread of NO₂ is closely related to the emissions near the surface, while it also has strong latitude-vertical dependence. The analysis spread is generally maximum in the upper troposphere, which is a result of the low concentrations which are not well constrained by the OMI data. The large analysis spread in the southern extratropics is related to large relative observation errors of OMI NO₂ data related to the low concentrations. The large analysis spread is for further the low concentrations. The large analysis spread is for further the low concentrations. The large analysis spread is for further the low concentrations. The large analysis spread is for further the low concentrations. The large analysis spread is for further the low concentrations.
- ²⁰ the low concentrations. These large analysis spreads indicate requirements for further constraints from additional observations or higher quality data.

The assimilation system can also be used to diagnose model and/or observation errors. We use the difference between analysis and forecast, the so-called analysis increment, to represent short-term systematic errors in the model (Fig. 16). By assuming

that the assimilated fields approximate the assimilated data after several assimilation cycles, the averaged analysis increment primarily relates to the persistent model bias. The increment thus represents the adjustment made in the analysis step to bring the model closer to the observations, and the spatial distribution of the averaged increments shows where the model fields are frequently adjusted by the data assimilation.

The positive increments obtained for O_3 and CO in the extratropical lower troposphere imply that CHASER tends to underestimate those concentrations in these regions compared to the assimilated data. Positive increments of O_3 are frequently observed over the northern Eurasian continent, around North America, and over the Southern Ocean.

- ⁵ The OSEs confirms that the positive O₃ analysis increments in the lower and middle troposphere are due to the TES O₃ data, while the upper tropospheric negative increments are due to both the TES and MLS O₃ data. This implies that the model bias strongly varies with height, because of different contributions of transport and chemical processes. The data assimilation also tends to increase CO over East China and
- North America near the surface, as similarly shown by Elguindi et al. (2010), whereas it decreases CO in the tropics. The negative NO₂ increments in the tropical and high-latitudes troposphere are associated with the the assimilation of very small or negative OMI NO₂ concentrations mainly over the oceans. The large positive NO₂ increments obtained for the extratropical UTLS reflects the fact that the assimilation of MLS O₃ and UNO₂ whereas the provide the provided the
- and HNO₃ data tends to compensate for the model underestimation through the interspecies correlation. The knowledges of the model error structure are useful to identify sources of the model error. Geer et al. (2006) showed that the enhanced skill of the best performing analysis can usually be attributed to better modeling.

6 Conclusions

An advanced data assimilation system for tropospheric chemical compositions, the CHASER-DAS, is developed based on the CHASER model and the LETKF scheme. The data assimilation system is applied to integrate observation information obtained from multiple satellite measurements, namely, NO₂ data from OMI, O₃ data from TES, CO data from MOPITT, and O₃ and HNO₃ data from MLS. The data assimilation provides multiple constraints on tropospheric composition and allows us to simultaneously optimize the atmospheric distributions of various chemical compositions together with

the emissions of O₃ precursors (NO_y and CO) while taking their chemical feedbacks in

the CO-OH-NO_x-O₃ system into account. In the simultaneous data assimilation system, improved atmospheric concentrations of chemically-related species have the potential to improve the emission inversion, while the improved emissions estimates will benefit the atmospheric concentration analysis through a reduction in the model forecast

⁵ error. A covariance localization technique is applied to neglect the covariance among non-related or weakly-related variables which may suffer significantly from errors in the ensemble sampling and the forecast model.

The dramatic improvement obtained by the assimilation demonstrates that multispecies data assimilation provides valuable information on various chemical fields. The

- OmF analysis confirmed significant error reductions for both bias and RMSE from the data assimilation. The standard deviation around the mean of the OmF is generally comparable to the observation error, indicating that the data assimilation is successfully performed. Significant reductions of both bias (by 85%) and RMSE (by 50%) against independent data sets for various chemical fields show that multi-species data
- assimilation is a very effective way of combining observation information and compensating for systematic model errors. The improvements include enhanced tropospheric NO_2 columns over industrial areas (with a global mean bias reduction of 40–85%), especially over China, reduced positive O_3 bias in the middle and upper troposphere (by 60%), reduced negative CO bias in the Northern Hemisphere in the lower troposphere
- ²⁰ (by 40–90%), especially over East Asia and North America, and a reduced negative HNO₃ bias in the extratropical UTLS (by 70–85%). Comparisons against ozonesonde and aircraft data confirmed improvements in the vertical profiles of O₃ and its precursors in the free troposphere and the UTLS through the data assimilation. The data assimilation removes most of the bias from the middle troposphere to the lower strato-
- 25 sphere against ozonesonde data, from 30–40 % to within 10 %. The results confirm that the assimilated satellite data have highly valuable information about the tropospheric chemical processes.

OSEs have been conducted to quantify the relative importance of each data set on constraining the emissions and concentrations. The assimilation of each individual

dataset has a strong influence on both assimilated and non-assimilated species through the use of inter-species error correlations and through the chemical model. For instance, the assimilation of upper tropospheric O_3 and HNO_3 obtained from MLS was useful to reduce the bias in the tropospheric NO_2 columns. Comparisons against

- ⁵ independent ozonesonde data showed that both MLS and TES O₃ data largely improve the O₃ profiles in the free troposphere and the UTLS. Note that all the assimilated data contribute to the global mean O₃ bias reduction compared to ozonesonde data in the middle troposphere (between 750 and 450 hPa) in July, through their influences on various chemical states that affect O₃ variations. Especially this last result demonstrates
- ¹⁰ the strength of the simultaneous assimilation of multiple datasets for different species. These inter-species influences can be tightly associated with the changes in OH. The simultaneous assimilation increased tropospheric OH concentrations in July by 5–15% in the tropics and the Southern Hemisphere mainly due to the assimilation of OMI NO₂ and TES O₃ data, respectively. The great improvement in July may be related to sum-¹⁵ mertime active chemical processes in the Northern Hemisphere.
 - In comparison to the a priori emissions based on bottom-up inventories, the optimized emissions of both NO_x and CO are generally higher over most industrial areas, especially in the northern mid-latitudes, implying that the emission inventories underestimate sources. The NO_x emissions estimated from the simultaneous data assimilation are somewhat different from those from the emission inversion system in which only the emissions are optimized from observations. The results indicate a large un-

20

- certainty in the a posteriori NO_x emissions due to model errors when estimating from NO_2 data only, with an uncertainty of up to 40% over industrial areas and up to 30% over biomass burning areas, as measured by the impact of the concentration assimila-
- tion on the a posteriori emissions. The simultaneous assimilation of multiple chemical observations is very useful to represent the chemical processes in a realistic way by removing model errors, and it provides important effects upon the emission inversion. The CO emissions estimated in this study may not have enough constraint from observations, because the calculation period is too short and the observational information

is insufficient. Nevertheless, comparison of our results to previous inverse modeling studies is very encouraging. The uncertainties in the a priori emissions, based on an extrapolation of year 1995 and 2000 inventories, caused large increments especially over anthropogenic source areas. The data assimilation also increases the lightning

⁵ NO_x sources over land, especially in boreal summer, indicating that the lightning parameterization used in the simulation has a large uncertainty. As a result of the simultaneous optimization, the tropospheric O₃ burden is increased by 5.6% in July, with almost equal contributions from the emission optimization and the direct adjustment to the concentration fields. This indicates the importance of the simultaneous assimilation of multiple satellite data sets for the tropospheric ozone budget analysis.

The CHASER-DAS provides valuable information for the future development of both models and observations. The ensemble spread can be a measure of the analysis uncertainty. The observed large analysis spreads for O_3 and NO_2 in the tropical upper troposphere and near the surface indicate a requirement for further constraints from

- additional observations or high quality data to improve the analysis. The analysis increment obtained during the data assimilation cycle primarily relates to persistent model biases. The positive analysis increments obtained for O_3 and CO imply that CHASER tends to underestimate (overestimate) O_3 (CO) concentrations in lower/middle troposphere and tends to overestimate (underestimate) them in the upper troposphere. This
- ²⁰ information is useful to identify sources of the model error and improve the performance of both model and data assimilation. The large analysis spreads and increments near the surface also indicate a requirement for better emission data sets.

The simultaneous assimilation of multiple satellite datasets is an important development for improving chemical weather forecasting (e.g. Kaminski et al., 2008) and bet-

ter understanding the processes controlling the atmospheric environment. However, further developments are still required. First, more observation data are required to constrain O_3 and its precursors, especially near the surface. Retrieval sensitivity to the lowermost troposphere is critical for the emission inversion and the near surface air quality analysis. For instance, adding the near infrared (NIR) channel to the MOPITT

retrieval increases the near surface sensitivity (Deeter et al., 2010), which may help to improve the analysis, while the IASI retrievals may contain information on the spatial extent of plumes (Coheur et al., 2009). Also, the emissions of O_3 precursors other than NO_x and CO, such as VOCs, have a pronounced influence on tropospheric chem-

- ⁵ istry. Further constraints are required for these fields; in particular, satellite CH₂O data may provide a significant constraints on VOCs emissions. Apart from the lower tropospheric observations, high quality satellite observations in the UTLS are needed for O₃ and HNO₃, potentially augmented with CO and PAN as well as short-lived gases such as NO₂ (ESA, 2012). Second, the model resolution is too coarse to describe accu-
- ¹⁰ rately small scale processes. A chemical data assimilation requires observations with sufficient spatial and temporal resolution to capture the heterogeneous distribution of tropospheric composition. In order to better take into account the small scale information available in the dataset, it is important to increase the model resolution close to the data set's resolution, as suggested by Pajot et al. (2011) and demonstrated using regional data assimilation systems (e.g. Hanea et al., 2004). In addition, the combined
- regional data assimilation systems (e.g. hanea et al., 2004). In addition, the combined use of satellite and surface in-situ data may provide strong constraints on the near surface analysis at high resolution. Third, introduction of a reasonable bias correction scheme is important to improve the analysis, especially when multiple data sets are simultaneously assimilated (e.g. Dee, 2005).

20 Appendix A

25

System ability check based on synthetic observations

It is of great interest to test the ability of the data assimilation system to improve the O_3 analysis in the presence of an emission error. We conducted an idealized data assimilation experiment, the so-called twin experiment, by perturbing both the initial condition and the NO_x emission. The purpose of this experiment is to demonstrate that the data assimilation is properly implemented and quantify how the emission optimization

influences the O₃ analysis, as similarly performed by Constantinescu et al. (2007) and Messina et al. (2011). Under the assumption of the perfect model scenario (i.e. a forecast model provides a perfect representation of the atmosphere), the actual background error and observation error statistics can be determined precisely, so that the perfect model experiment allows us to demonstrate the importance of the data assimilation without unexpected model and observation errors.

A time series of a reference solution (or true state) for O_3 and NO_2 fields was generated by the simulation (without any assimilation) of the CTM using unperturbed emissions (i.e. the a priori emissions used for the real data assimilation). The reference solution was used to obtain artificial observation data and initial conditions for ensemble

simulations and to validate the analysis. The artificial observation data were obtained from the true state, with the addition of zero-mean Gaussian random noise as observation errors with standard deviations of 10% of the reference concentration. It was assumed that observation stations were located at 6.25% (12.5%) of the model grid

10

- ¹⁵ points for O₃ (NO₂) in the horizontal; the vertical partial column with 3 km resolution was assimilated every 6 h. The state vector includes O₃ concentration and NO_x emissions. The O₃ data was used to update the O₃ concentration, while the NO₂ data was used to update NO_x emissions. The number of the assumed observations was larger than that in the real world, and it will affect the data assimilation performance. However, this
- idealized setting helps to demonstrate the ability of the system with enough constraints from observations. The simulated fields on 1 November 2007, were used in the initial assimilation cycle, and the analysis for 7–8 November was evaluated. The background error covariance for the initial assimilation cycle was obtained from the the lagged average forecast (Hoffman and Kalnay, 1983); the initial ensemble concentration fields were obtained from the reference simulation during 28 October to 4 November 2007.

Because of the biased emissions (constructed based on the annual mean a priori emissions), the model simulation without data assimilation has large errors in the simulated O_3 fields in the lower troposphere. The mean O_3 RMSE normalized by the background concentration averaged over 10° S– 50° N latitudinal bands at 950 hPa is

23.7% for the model simulation, which is almost the same as the initial error of 25.0%. The assimilation of O_3 data reduces it to 16.5%. The assimilation of NO_2 data helped to improve the O_3 analysis by reducing the errors included in the O_3 simulation due to biased NO_x emissions; the normalized O_3 RMSE is 14.2% with a regional mean NO_x

- ⁵ emission bias (RMSE) reduction of 41 (30) %. The assimilation of both O₃ and NO₂ data provided the best performance analysis, with a normalized O₃ RMSE of 11.7 %, which is almost equivalent to the assumed observation error (i.e. 10 %). In contrast, in the free troposphere (e.g. at 500 hPa), assimilation of O₃ data provided a much more significant improvement of the O₃ analysis than that provided by the NO₂ data. These
 ¹⁰ results confirm that the simultaneous optimization for O₃ concentration and its precur-
- sors emissions is a powerful framework for the tropospheric chemistry analysis.

Acknowledgements. This research was supported by the JSPS Postdoctoral Fellowships for Research Abroad and the Environment Research and Technology Development Fund (A-0903) of the Ministry of the Environment, Japan. Folkert Boersma acknowledges funding by the Netherlands Organisation for Scientific Research, NWO Vidi grant 864.09.001.

References

- Allen, D. J. and Pickering, K. E.: Evaluation of lightning flash rate parameterizations for use in a global chemical transport model, J. Geophys. Res., 107, 4711, doi:10.1029/2002JD002066, 2002. 16169
- Arellano, A. and Hess, P.: Sensitivity of top-down estimates of CO sources to GCTM transport, Geophys. Res. Lett., 33, L21807, doi:10.1029/2006GL027371, 2006. 16134, 16169
 Arellano, A., Kasibhatla, P., Giglio, L., der Werf, G. V., and Randerson, J.: Top-down estimates of global CO using MOPITT measurements, Geophys. Res. Lett., 31, L01104, doi:10.1029/2003GL018609, 2004. 16133, 16168, 16169
- ²⁵ Arellano Jr., A. F., Raeder, K., Anderson, J. L., Hess, P. G., Emmons, L. K., Edwards, D. P., Pfister, G. G., Campos, T. L., and Sachse, G. W.: Evaluating model performance of an ensemble-based chemical data assimilation system during INTEX-B field mission, Atmos. Chem. Phys., 7, 5695–5710, doi:10.5194/acp-7-5695-2007, 2007. 16135, 16170

- Discussion Paper Beer, R.: TES on the Aura mission: scientific objectives, measurements, and analysis overview, IEEE T. Geosci. Remote, 44, 1102–1105, 2006. 16134, 16139, 16194 Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO₂ retrieval from space, J. Geophys. Res., 109, D04311, doi:10.1029/2003JD003962, 2004. 16138,
- Boersma, K. F., Eskes, H. J., Meijer, E. W., and Kelder, H. M.: Estimates of lightning NO_v production from GOME satellite observations, Atmos. Chem. Phys., 5, 2311–2331, doi:10.5194/acp-5-2311-2005, 2005. 16170

16142, 16143, 16195

5

Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van der A, R. J., Sneep, M.,

- van den Oord, G. H. J., Levelt, P. F., Stammes, P., Gleason, J. F., and Bucsela, E. J.: 10 Near-real time retrieval of tropospheric NO₂ from OMI, Atmos. Chem. Phys., 7, 2103–2118, doi:10.5194/acp-7-2103-2007, 2007. 16138
 - Boersma, K. F., Jacob, D. J., Bucsela, E. J., Perring, A. E., Dirksen, R., van der A, R. J., Yantosca, R. M., Park, R. J., Wenig, M. O., Bertram, T. H., and Cohen, R. C.: Validation
- of OMI tropospheric NO₂ observations during INTEX-B and application to constrain NO₂ 15 emissions over the Eastern United States and Mexico, Atmos. Environ., 42, 4480-4497, doi:10.1016/j.atmosenv.2008.02.004, 2008a. 16167
 - Boersma, K. F., Jacob, D. J., Eskes, H. J., Pinder, R. W., Wang, J., and van der A, R. J.: Intercomparison of SCIAMACHY and OMI tropospheric NO₂ columns: observing the di-
- urnal evolution of chemistry and emissions from space, J. Geophys. Res., 113, 1-14, 20 doi:10.1029/2007JD008816, 2008b. 16133
 - Boersma, K. F., Jacob, D. J., Trainic, M., Rudich, Y., DeSmedt, I., Dirksen, R., and Eskes, H. J.: Validation of urban NO₂ concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities,
- Atmos. Chem. Phys., 9, 3867–3879, doi:10.5194/acp-9-3867-2009, 2009. 16159 25 Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y., and Brunner, D.: An improved tropospheric NO₂ column retrieval algorithm for the Ozone Monitoring Instrument, Atmos. Meas. Tech., 4, 1905–1928, doi:10.5194/amt-4-1905-2011, 2011. 16138, 16142, 16143, 16194, 16195 30
 - Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: mission objectives and measurement modes, J. Atmos. Sci., 56, 127-150, 1999. 16134, 16142

Bowman, K. W., Worden, J., Steck, T., Worden, H. M., Clough, S., and Rodgers, C.: Capturing time and vertical variability of tropospheric ozone: a study using TES nadir retrievals, J. Geophys. Res., 107, 4723, doi:10.1029/2002JD002150, 2002. 16139

Bowman, K. W., Rodgers, C. D., Sund-Kulawik, S., Worden, J., Sarkissian, E., Osterman, G.,

Steck, T., Luo, M., Eldering, A., Shephard, M. W., Worden, H., Clough, S. A., Brown, P. D., Rinsland, C. P., Lampel, M., Gunson, M., and Beer, R.: Tropospheric emission spectrometer: retrieval method and error analysis, IEEE T. Geosci. Remote, 44, 1297–1307, 2006. 16139

Bowman, K. W., Jones, D. B. A., Logan, J. A., Worden, H., Boersma, F., Chang, R., Kulawik, S., Osterman, G., Hamer, P., and Worden, J.: The zonal structure of tropical O₃ and CO as

- observed by the Tropospheric Emission Spectrometer in November 2004 Part 2: Impact of surface emissions on O_3 and its precursors, Atmos. Chem. Phys., 9, 3563–3582, doi:10.5194/acp-9-3563-2009, 2009. 16139
 - Boxe, C. S., Worden, J. R., Bowman, K. W., Kulawik, S. S., Neu, J. L., Ford, W. C., Osterman, G. B., Herman, R. L., Eldering, A., Tarasick, D. W., Thompson, A. M., Doughty, D. C.,
- Hoffmann, M. R., and Oltmans, S. J.: Validation of northern latitude Tropospheric Emission Spectrometer stare ozone profiles with ARC-IONS sondes during ARCTAS: sensitivity, bias and error analysis, Atmos. Chem. Phys., 10, 9901–9914, doi:10.5194/acp-10-9901-2010, 2010. 16139

Boynard, A., Beekmann, M., Foret, G., Ung, A., Szopa, S., Schmechtig, C., and Coman, A.:

- Assessment of regional ozone model uncertainty with a modelling ensemble using an explicit error representation, Atmos. Environ., 45, 784–793, 2011. 16148, 16170
 - Bucsela, E. J., Perring, A. E., Cohen, R. C., Boersma, K. F., Celarier, E. A., Gleason, J. F., Wenig, M. O., Bertram, T. H., Wooldridge, P. J., Dirksen, R., and Veefkind, J. P.: Comparison of tropospheric NO₂ from in situ aircraft measurements with near-real-time and standard
- product data from OMI, J. Geophys. Res., 113, D16S31, doi:10.1029/2007JD008838, 2008. 16145
 - Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., and Lefebvre, A.: GOME-2 MetOp's Second Generation Sensor for Operational Ozone Monitoring, No. 102, ESA Bulletin, 2000. 16134, 16143
- ³⁰ Coheur, P.-F., Clarisse, L., Turquety, S., Hurtmans, D., and Clerbaux, C.: IASI measurements of reactive trace species in biomass burning plumes, Atmos. Chem. Phys., 9, 5655–5667, doi:10.5194/acp-9-5655-2009, 2009. 16176

 Schmechtig, C., Flaud, J.-M., and Bergametti, G.: Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe, Atmos. Chem. Phys., 12, 2513–2532, doi:10.5194/acp-12-2513-2012, 2012. 16134, 16135
 ⁵ Constantinescu, E., Sandu, A., Chai, T., and Carmichael, G.: Ensemble-based chemicolumnation of the particulation of the partic

Coman, A., Foret, G., Beekmann, M., Eremenko, M., Dufour, G., Gaubert, B., Ung, A.,

- cal data assimilation. I: general approach, Q. J. Roy. Meteor. Soc., 133, 1229–1243, doi:10.1002/qj.76, 2007. 16135, 16148, 16177
 - Daniel, J. S. and Solomon, S.: On the climate forcing of carbon monoxide, J. Geophys. Res., 103, 13249–13260, 1998. 16133
- DeCaria, A. J., Pickering, K. E., Stenchikov, G. L., and Ott, L. E.: Lightning-generated NO_x and its impact on tropospheric ozone production: a three-dimensional modeling study of a Stratosphere-Troposphere Experiment: Radiation, Aerosols and Ozone (STERAO-A) thun-derstorm, J. Geophys. Res., 110, D14303, doi:10.1029/2004JD005556, 2005. 16164
 - Dee, D. P.: Bias and data assimilation, Q. J. Roy. Meteor. Soc., 132, 3323–3343, doi:10.1256/gi.05.137.2005.16176
 - Deeter, M. N.: MOPITT (Measurements of Pollution in the Troposphere) Version 5 Product User's Guide, Tech. rep., National Center for Atmospheric Research, Boulder, CO, 2011. 16140

Deeter, M. N., Emmons, L. K., Francis, G. L., Edwards, D. P., Gille, J. C., Warner, J. X.,

Khattatov, B., Ziskin, D., Lamarque, J.-F., Ho, S.-P., Yudin, V., Attié, J.-L., Packman, D., Chen, J., Mao, D., and Drummond, J. R.: Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument, J. Geophys. Res., 108, 4399, doi:10.1029/2002JD003186, 2003. 16134, 16140

Deeter, M. N., Edwards, D. P., Gille, J. C., and Drummond, J. R.: Sensitivity of MOPITT obser-

- vations to carbon monoxide in the lower troposphere, Geophys. Res. Lett., 112, D24306,, doi:10.1029/2007JD008929, 2007. 16140
 - Deeter, M. N., Edwards, D. P., Gille, J. C., Emmons, L. K., Francis, G., Ho, S.-P., Mao, D., Masters, D., Worden, H., Drummond, J. R., and Novelli, P. C.: The MOPITT version 4 CO product: algorithm enhancements, validation and long-term stability, J. Geophys. Res., 115,
- ³⁰ D07036, doi:10.1029/2009JD013005, 2010. 16140, 16141, 16176, 16194

15

Edwards, D. P., Pétron, G., Novelli, P. C., Emmons, L. K., Gille, J. C., and Drummond, J. R.: Southern Hemisphere carbon monoxide interannual variability observed by

Terra/Measurement of Pollution in the Troposphere (MOPITT), J. Geophys. Res., 111, D16303, doi:10.1029/2006JD007079, 2006. 16134

- Elbern, H. and Schmidt, H.: Ozone episode analysis by four-dimensional variational chemistry data assimilation, J. Geophys. Res., 106, 3569–3590, 2001. 16135
- ⁵ Elguindi, N., Clark, H., Ordóñez, C., Thouret, V., Flemming, J., Stein, O., Huijnen, V., Moinat, P., Inness, A., Peuch, V.-H., Stohl, A., Turquety, S., Athier, G., Cammas, J.-P., and Schultz, M.: Current status of the ability of the GEMS/MACC models to reproduce the tropospheric CO vertical distribution as measured by MOZAIC, Geosci. Model Dev., 3, 501–518, doi:10.5194/gmd-3-501-2010, 2010. 16135, 16172
- Errera, Q., Daerden, F., Chabrillat, S., Lambert, J. C., Lahoz, W. A., Viscardy, S., Bonjean, S., and Fonteyn, D.: 4D-Var assimilation of MIPAS chemical observations: ozone and nitrogen dioxide analyses, Atmos. Chem. Phys., 8, 6169–6187, doi:10.5194/acp-8-6169-2008, 2008. 16135

ESA: Report for Mission Selection: PRocess Exploration through Measurements of Infrared and

- ¹⁵ millimetre-wave Emitted Radiation (PREMIER), ESA SP-1324/3 (3 volume series), European Space Agency, Noordwijk, The Netherlands, 2012. 16176
 - Eskes, H. J. and Boersma, K. F.: Averaging kernels for DOAS total-column satellite retrievals, Atmos. Chem. Phys., 3, 1285–1291, doi:10.5194/acp-3-1285-2003, 2003. 16135, 16137, 16138
- ²⁰ Eskes, H. J., Velthoven, P. F. J. V., Valks, P. J. M., and Kelder, H. M.: Assimilation of GOME total-ozone satellite observations in a three-dimensional tracer-transport model, Q. J. Roy. Meteor. Soc., 129, 1663–1681, doi:10.1256/qj.02.14, 2003. 16157
 - European Commission: Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), Emission Database for Global Atmospheric Research (EDGAR), release version 4.2, http://edgar.irc.ec.europa.eu. 2011, 16166
- sion 4.2, http://edgar.jrc.ec.europa.eu, 2011. 16166
 - Feng, L., Brugge, R., Hólm, E. V., Harwood, R. S., O'Neill, A., Filipiak, M. J., Froidevaux, L., and Livesey, N.: Four-dimensional variational assimilation of ozone profiles from the Microwave Limb Sounder on the Aura satellite, J. Geophys. Res., 113, D15S0, doi:10.1029/2007JD009121, 2008. 16160
- Flemming, J., Inness, A., Flentje, H., Huijnen, V., Moinat, P., Schultz, M. G., and Stein, O.: Coupling global chemistry transport models to ECMWF's integrated forecast system, Geosci. Model Dev., 2, 253–265, doi:10.5194/gmd-2-253-2009, 2009. 16135

Folberth, G., Hauglustaine, D. A., Ciais, P., and Lathie're, J.: On the role of atmospheric chemistry in the global CO₂ budget, Geophys. Res. Lett., 32, L08801, doi:10.1029/2004GL021812, 2005. 16133

Foret, G., Hamaoui, L., Schmechtig, C., Eremenko, M., Keim, C., Dufour, G., Boynard, A., Co-

man, A., Ung, A., and Beekmann, M.: Evaluating the potential of IASI ozone observations to constrain simulated surface ozone concentrations, Atmos. Chem. Phys., 9, 8479–8491, doi:10.5194/acp-9-8479-2009, 2009. 16136

Fortems-Cheiney, A., Chevallier, F., Pison, I., Bousquet, P., Szopa, S., Deeter, M. N., and Clerbaux, C.: Ten years of CO emissions as seen from Measurements of Pollution in the Tro-

- ¹⁰ posphere (MOPITT), J. Geophys. Res., 116, D05304, doi:10.1029/2010JD014416, 2011. 16168, 16169
 - Froidevaux, L., Jiang, Y. B., Lambert, A., Livesey, N. J., Read, W. G., Waters, J. W., Browell, E. V., Hair, J. W., Avery, M. A., McGee, T. J., Twigg, L. W., Sumnicht, G. K., Jucks, K. W., Margitan, J. J., Sen, B., Stachnik, R. A., Toon, G. C., Bernath, P. F., Boone, C. D., Walker,
- K. A., Filipiak, M. J., Harwood, R. S., Fuller, R. A., Manney, G. L., Schwartz, M. J., Daffer, W. H., Drouin, B. J., Cofield, R. E., Cuddy, D. T., Jarnot, R. F., Knosp, B. W., Perun, V. S., Snyder, W. V., Stek, P. C., Thurstans, R. P., and Wagner, P. A.: Validation of Aura Microwave Limb Sounder stratospheric ozone measurements, J. Geophys. Res., 113, D15S20, doi:10.1029/2007JD008771, 2008. 16142
- Fu, T.-M., Jacob, D. J., Palmer, P. I., Chance, K., Wang, Y. X., Barletta, B., Blake, D. R., Stanton, J. C., and Pilling, M. J.: Space-based formaldehyde measurements as constraints on volatile organic compound emissions in East and South Asia, J. Geophys. Res., 112, D06312, doi:10.1029/2006JD007853, 2007. 16133

Geer, A. J., Lahoz, W. A., Bekki, S., Bormann, N., Errera, Q., Eskes, H. J., Fonteyn, D., Jack-

- son, D. R., Juckes, M. N., Massart, S., Peuch, V.-H., Rharmili, S., and Segers, A.: The ASSET intercomparison of ozone analyses: method and first results, Atmos. Chem. Phys., 6, 5445– 5474, doi:10.5194/acp-6-5445-2006, 2006. 16172
 - Gloudemans, A. M. S., de Laat, A. T. J., Schrijver, H., Aben, I., Meirink, J. F., and van der Werf, G. R.: SCIAMACHY CO over land and oceans: 2003–2007 interannual vari-
- ability, Atmos. Chem. Phys., 9, 3799–3813, doi:10.5194/acp-9-3799-2009, 2009. 16134
 Graedel, T. E., Bates, T. S., Bouwman, A. F., Cunnold, D., Dignon, J., Fung, I., Jacob, D. J., Lamb, B. K., Logan, J. A., Marland, G., Middleton, P., Pacyna, J. M., Placet, M., and Veldt,

C.: A compilation of inventories of emissions to the atmosphere, Global Biogeochem. Cy., 7, 1-26, 1993. 16146

- Grassi, B., Redaelli, G., and Visconti, G.: Assimilation of stratospheric ozone in the chemical transport model STRATAQ, Ann. Geophys., 22, 2669–2678, doi:10.5194/angeo-22-2669-2004, 2004, 16135
- 5
 - Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873-8892, doi:10.1029/94JD02950, 1995. 16146
- ¹⁰ Hains, J., Boersma, F., Kroon, M., Dirksen, R., Cohen, R. C., Perring, A., Bucsela, E., Volten, H., Swart, D., Richter, A., Wittrock, F., Schoenhardt, A., Wagner, T., Ibrahim, O., Van Roozendael, M., Pinardi, G., Gleason, J. F., Veefkind, J., and Levelt, P.: Testing and improving OMI DOMINO tropospheric NO₂ using observations from the DANDELIONS and INTEX-B validation campaigns, J. Geophys. Res., 115, 1–20, doi:10.1029/2009JD012399, 2010. 16145
- Hanea, R. G., Velders, G. J. M., and Heemink, A.: Data assimilation of ground-level ozone in 15 Europe with a Kalman filter and chemistry transport model, J. Geophys. Res., 109, D10302, doi:10.1029/2003JD004283, 2004. 16135, 16176
 - Heald, C. L., Jacob, D. J., Jones, D. B. A., Palmer, P. I., Logan, J. A., and Streets, D. G.: Comparative inverse analysis of satellite (MOPITT) and aircraft (TRACE-P) observa-
- tions to estimate Asian sources of carbon monoxide, J. Geophys. Res., 109, D23306, 20 doi:10.1029/2004JD005185, 2004. 16141
 - Heikes, B. G.: Formaldehyde and hydroperoxides at Mauna Loa observatory, J. Geophys. Res., 97, 18001-18013, 1992, 16164

Ho, S. ., Edwards, D. P., Gille, J. C., Luo, M., Osterman, G. B., Kulawik, S. S., and Wor-

- den, H.: A global comparison of carbon monoxide profiles and column amounts from Tro-25 pospheric Emission Spectrometer (TES) and Measurements of Pollution in the Troposphere (MOPITT), J. Geophys. Res., 114, D21307, doi:10.1029/2009JD012242, 2009. 16143 Hoffman, R. and Kalnay, E.: Lagged average forecasting, and alternative to Monte Carlo forecasting, Tellus, 35A, 100-118, 1983. 16177
- Holloway, T., Levy, H., and Kasibhatla, P.: Global distribution of carbon monoxide, J. Geophys. 30 Res., 105, 12123-12147, doi:10.5194/acp-11-4705-2011, 2000. 16133
 - Hooghiemstra, P. B., Krol, M. C., Meirink, J. F., Bergamaschi, P., van der Werf, G. R., Novelli, P. C., Aben, I., and Röckmann, T.: Optimizing global CO emission estimates using a four-

dimensional variational data assimilation system and surface network observations, Atmos. Chem. Phys., 11, 4705–4723, doi:10.5194/acp-11-4705-2011, 2011. 16133, 16165, 16169 Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev., 129, 123-137, 2001. 16147

- ⁵ Hudman, R. C., Jacob, D. J., Turguety, S., Leibensperger, E. M., Murray, L. T., Wu, S., Gilliland, A. B., Avery, M., Bertram, T. H., Brune, W., Cohen, R. C., Dibb, J. E., Flocke, F. M., Fried, A., Holloway, J., Neuman, J. A., Orville, R., Perring, A., Ren, X., Sachse, G. W., Singh, H. B., Swanson, A., and Wooldridge, P. J.: Surface and lightning sources of nitrogen oxides over the United States: magnitudes, chemical evolution, and outflow, J. Geophys. Res., 112. D12S05. doi:10.1029/2006JD007912. 2007. 16164. 16165 10
 - Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter, Physica D, 230, 112-126, 2007. 16146, 16147

Jackson, D.: Assimilation of EOS MLS ozone observations in the Met Office data assimilation system, Q. J. Roy. Meteor. Soc., 133, 1771–1788, doi:10.1002/gj.140, 2007. 16160

15 Jaeglé, L., Steinberger, L., Martin, R. V., and Chance, K.: Global partitioning of NO_v sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions, Faraday Discuss., 130, 407-423, 2005. 16167

Jenkins, G. S. and Ryu, J.-H.: Linking horizontal and vertical transports of biomass fire emis-

- sionsto the tropical Atlantic ozone paradox during the Northern Hemisphere winter season: 20 climatology, Atmos. Chem. Phys., 4, 449–469, doi:10.5194/acp-4-449-2004, 2004. 16133 Jones, D. B. A., Bowman, K. W., Palmer, P. I., Worden, J. R., Jacob, D. J., Hoffman, R. N., Bey, I., and Yantosca, R. M.: Potential of observations from the Tropospheric Emission Spectrometer to constrain continental sources of carbon monoxide, J. Geophys. Res., 108, 4789, doi:10.1029/2003JD003702, 2003. 16139 25
 - Jones, D. B. A., Bowman, K. W., Logan, J. A., Heald, C. L., Liu, J., Luo, M., Worden, J., and Drummond, J.: The zonal structure of tropical O_3 and CO as observed by the Tropospheric Emission Spectrometer in November 2004 - Part 1: Inverse modeling of CO emissions, Atmos. Chem. Phys., 9, 3547–3562, doi:10.5194/acp-9-3547-2009, 2009. 16134, 16165, 16168, 16169
- 30
 - Kaminski, J. W., Neary, L., Struzewska, J., McConnell, J. C., Lupu, A., Jarosz, J., Toyota, K., Gong, S. L., Côté, J., Liu, X., Chance, K., and Richter, A.: GEM-AQ, an on-line global multiscale chemical weather modelling system: model description and evaluation of gas phase

chemistry processes, Atmos. Chem. Phys., 8, 3255-3281, doi:10.5194/acp-8-3255-2008, 2008. 16175

- Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., et al.: NCEP-DOE AMIP-II Reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1643, doi:10.1175/BAMS-83-11-1631, 2002. 16146
- Kasibhatla, P., Logan, J., Palmer, P., and Novelli, P.: Top-down estimate of a large sources of atmospheric carbon monoxide associated with fuel combustion in Asia, Geophys. Res. Lett., 29, 1900, doi:10.1029/2002GL015581, 2002. 16133
- Khattatov, B. V., Lamarque, J.-F., Lyjak, L. V., Menard, R., Levelt, P., Tie, X., Brasseur, G. P., and Gille, J. C.: Assimilation of satellite observations of long-lived chemical species in global chemistry transport models, J. Geophys. Res., 105, 29135–29144, doi:10.1029/2000JD900466, 2000. 16135
 - Kopacz, M., Jacob, D. J., Henze, D. K., Heald, C. L., Streets, D. G., and Zhang, Q.: Comparison of adjoint and analytical Bayesian inversion methods for constraining Asian sources of carbon monoxide using satellite (MOPITT) measurements of CO columns, J. Geophys. Res., 114, D04305. doi:10.1029/2007JD009264. 2009. 16133
- Kopacz, M., Jacob, D. J., Fisher, J. A., Logan, J. A., Zhang, L., Megretskaia, I. A., Yantosca, R. M., Singh, K., Henze, D. K., Burrows, J. P., Buchwitz, M., Khlystova, I., McMillan, W. W., Gille, J. C., Edwards, D. P., Eldering, A., Thouret, V., and Nedelec, P.: Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets

15

- ²⁰ (MOPITT, AIRS, SCIAMACHY, TES), Atmos. Chem. Phys., 10, 855–876, doi:10.5194/acp-10-855-2010, 2010. 16134, 16140, 16168, 16169
 - Lahoz, W. A., Errera, Q., Swinbank, R., and Fonteyn, D.: Data assimilation of stratospheric constituents: a review, Atmos. Chem. Phys., 7, 5745–5773, doi:10.5194/acp-7-5745-2007, 2007. 16135, 16148, 16156, 16157
- Lamsal, L. N., Martin, R. V., van Donkelaar, A., Celarier, E. a., Bucsela, E. J., Boersma, K. F., Dirksen, C. L., and Wang, Y.: Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: insight into the seasonal variation of nitrogen oxides at northern midlatitudes, J. Geophys. Res., 115, 1–15, doi:10.1029/2009JD013351, 2010. 16133
- Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., van den Oord, G. H. J., Bhartia, P. K., Tamminen, J., de Haan, J. F., and Veefkind, J. P.: Science objectives of the Ozone Monitoring Instrument, Geosci. Remote Sens., 44, 1199–1208, doi:10.1109/TGRS.2006.872336, 2006. 16134, 16137

- Livesey, N. J., Read, W. G., Froidevaux, L., Lambert, A., Manney, G. L., Pumphrey, H. C., Santee, M. L., Schwartz, M. J., Wang, S., Cofield, R. E., Cuddy, D. T., Fuller, R. A., Jarnot, R. F., Jiang, J. H., Knosp, B. W., Stek, P. C., Wagner, P. A., and Wu, D. L.: Aura Microwave Limb Sounder (MLS). Version 3.3 Level 2 data quality and description document, Tech. Rep.
- JPL D-33509, Jet Propul. Lab., Pasadena, CA, 2011. 16141, 16142, 16194 Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B.: Tropospheric chemistry: a global perspective, J. Geophys. Res., 86, 7210–7254, 1981. 16133
 - Lopez, J. P., Luo, M., Christensen, L. E., Loewenstein, M., Jost, H., Webster, C. R., and Osterman, G.: TES carbon monoxide validation during two AVE campaigns using the
- ¹⁰ Argus and ALIAS instruments on NASA's WB-57F, J. Geophys. Res., 113, D16S47, doi:10.1029/2007JD008811, 2008. 16134
 - Luo, M., Rinsland, C. P., Rodgers, C. D., Logan, J. A., Worden, H., Kulawik, S., Eldering, A., Goldman, A., Shephard, M. W., Gunson, M., and Lampel, M.: Comparison of carbon monoxide measurements by TES and MOPITT: influence of a priori data and instrument characteristics on nadir atmospheric species retrievals. J. Geophys. Res., 112, D09303.
- ¹⁵ characteristics on nadir atmospheric species retrievals, J. Geophys. Res., 112, D09303, doi:10.1029/2006JD007663, 2007. 16143
 Martin, R., Jacob, D., Chance, K., Kurosu, T., Palmer, P., and Evans, M.: Global inventory of attracted species retrieval by each species of NO. as here a species o
 - nitrogen oxide emissions constrained by space-based observations of NO₂ columns, J. Geophys. Res., 108, 1–12, doi:10.1029/2003JD003453, 2003. 16133
- Martin, R. V., Jacob, D. J., Logan, J. A., Bey, I., Yantosca, R. M., Staudt, A. C., Li, Q. B., Fiore, A. M., Duncan, B. N., Liu, H., Ginoux, P., and Thouret, V.: Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations, J. Geophys. Res., 107, 4351, doi:10.1029/2001JD001480, 2002. 16170
 - Martin, R. V., Sauvage, B., Folkins, I., Sioris, C. E., Boone, C., Bernath, P., and Ziemke, J.:
- ²⁵ Space-based constraints on the production of nitric oxide by lightning, J. Geophys. Res., 112, 1–14, doi:10.1029/2006JD007831, 2007. 16133, 16164, 16170
 - Massart, S., Piacentini, A., and Pannekoucke, O.: Importance of using ensemble estimated background error covariances for the quality of atmospheric ozone analyses, Q. J. Roy. Meteor. Soc., 138, 889–905 doi:10.1002/qj.971, 2012. 16148
- ³⁰ Ménard, R. and Chang, L.-P.: Assimilation of stratospheric chemical tracer observations using a Kalman filter. Part II: χ^2 -validated results and analysis of variance and correlation dynamics, Mon. Weather Rev., 128, 2672–2686, 2000. 16156

Messina, P., D'Isidoro, M., Maurizi, A., and Fierli, F.: Impact of assimilated observations on improving tropospheric ozone simulations, Atmos. Environ., 45, 6674–6681, doi:10.1016/j.atmosenv.2011.08.056, 2011. 16177

Millet, D. B., Jacob, D. J., Turquety, S., Hudman, R. C., Wu, S. L., Fried, A., Walega, J., Heikes, B.

- G., Blake, D. R., Singh, H. B., Anderson, B. E., and Clarke, A. D.: Formaldehyde distribution over North America: implications for satellite retrievals of formaldehyde columns and isoprene emission, J. Geophys. Res., 111, D24S02, doi:10.1029/2005JD006853, 2006. 16164
 - Miyazaki, K., Eskes, H. J., and Sudo, K.: Global NO_x emission estimates derived from an assimilation of OMI tropospheric NO₂ columns, Atmos. Chem. Phys., 12, 2263–2288,
- doi:10.5194/acp-12-2263-2012, 2012. 16134, 16138, 16146, 16147, 16148, 16150, 16151, 16158, 16164, 16166, 16167
 - Miyoshi, T. and Yamane, S.: Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution, Mon. Weather Rev., 135, 3841–3861, doi:10.1175/2007MWR1873.1, 2007. 16147, 16148
- Müller, J.-F. and Stavrakou, T.: Inversion of CO and NO_x emissions using the adjoint of the IMAGES model, Atmos. Chem. Phys., 5, 1157–1186, doi:10.5194/acp-5-1157-2005, 2005. 16134, 16165, 16167
 - Nassar, R., Logan, J. A., Worden, H. M., Megretskaia, I. A., Bowman, K. W., Osterman, G. B., Thompson, A. M., Tarasick, D. W., Austin, S., Claude, H., Dubey, M. K., Hocking, W.
- K., Johnson, B. J., Joseph, E., Merrill, J., Morris, G. A., Newchurch, M., Oltmans, S. J., Posny, F., Schmidlin, F. J., Vömel, H., Whiteman, D. N., and Witte, J. C.: Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles using ozonesonde measurements, J. Geophys. Res., 113, D15S17, doi:10.1029/2007JD008819, 2008. 16139, 16163 Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian
- emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444, doi:10.5194/acp-7-4419-2007, 2007. 16146
 - Olivier, J. G. J., Van Aardenne, J. A., Dentener, F., Ganzeveld, L., and Peters, J. A. H. W.: Recent trends in global greenhouse gas emissions: regional trends 1970–2000 and spatial distribution of key sources in 2000, Environ. Sci., 2, 81–99, 2005. 16146
- ³⁰ Osterman, G. B., Kulawik, S. S., Worden, H., Richards, N. A., Fisher, B. M., Eldering, A., Shephard, M. W., Froidevaux, L., Labow, G., Luo, M., Herman, R. L., Bowman, K. W., and Thompson, A. M.: Validation of Tropospheric Emission Spectrometer (TES) measurements of the

total, stratospheric, and tropospheric column abundance of ozone, J. Geophys. Res., 113, D15S16, doi:10.1029/2007JD008801, 2008. 16140, 16157

- Osterman, G., Bowman, K., Eldering, A., Fisher, B., Herman, R., Jacob, D., Jourdain, L., Kulawik, S., Luo, M., Monarrez, R., Paradise, S., Payne, V., Poosti, S., Richards, N., Rider, D.,
- Shepard, D., Shephard, M., Vilnrotter, F., Worden, H., Worden, J., Yun, H., and Zhang, L.: TES Level 2 Data Users Guide, v4.0, Tech. Rep. JPL D-38042, Jet Propul. Lab., Pasadena, CA, 2009. 16139
 - Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza, M., Kalnay, E., Patil, D. J., and Yorke, J. A.: A local ensemble Kalman filter for atmospheric data assimilation, Tellus A, 56, 415–428, doi:10.1111/j.1600-0870.2004.00076.x, 2004. 16146
- Iellus A, 56, 415–428, doi:10.1111/J.1600-0870.2004.00076.x, 2004. 16146
 Ott, L. E., Pickering, K. E., Stenchikov, G. L., Allen, D. J., DeCaria, A. J., Ridley, B., Lin, R.-F., Lang, S., and Tao, W.-K.: Production of lightning NO_x and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations, J. Geophys. Res.-Atmos., 115, D04301, doi:10.1029/2009jd011880, 2010. 16169
- Pajot, B., Massart, S., Cariolle, D., Piacentini, A., Pannekoucke, O., Lahoz, W. A., Clerbaux, C., Coheur, P. F., and Hurtmans, D.: High resolution assimilation of IASI ozone data with a global CTM, Atmos. Chem. Phys. Discuss., 11, 29357–29406, doi:10.5194/acpd-11-29357-2011, 2011. 16152, 16176

Parrington, M., Jones, D. B. A., Bowman, K. W., Horowitz, L. W., Thompson, A. M., Tarasick, D.

 W., and Witte, J. C.: Estimating the summertime tropospheric ozone distribution over North America through assimilation of observations from the Tropospheric Emission Spectrometer, J. Geophys. Res., 113, D18307, doi:10.1029/2007JD009341, 2008. 16134, 16135, 16143, 16157, 16195

Parrington, M., Jones, D. B. A., Bowman, K. W., Thompson, A. M., Tarasick, D. W., Merrill, J.,

- Oltmans, S. J., Leblanc, T., Witte, J. C., and Millet, D. B.: Impact of the assimilation of ozone from the Tropospheric Emission Spectrometer on surface ozone across North America, Geophys. Res. Lett., 36, L04802, doi:10.1029/2008GL036935, 2009. 16162
 - Pickering, K. E., Wang, Y., Tao, W.-K., Price, C., and Müller, J.-F.: Vertical distributions of lightning NO_x for use in regional and global chemical transport models, J. Geophys. Res., 103, 31203–31216, 1998. 16133
 - Pison, I., Bousquet, P., Chevallier, F., Szopa, S., and Hauglustaine, D.: Multi-species inversion of CH₄, CO and H₂ emissions from surface measurements, Atmos. Chem. Phys., 9, 5281– 5297, doi:10.5194/acp-9-5281-2009, 2009. 16165, 16169

30

- Price, C. and Rind, D.: A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res., 97, 9919–9933, 1992. 16146, 16169
- Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J., and Kasibhatla, P. S.: Global Fire Emissions Database, Version 2 (GFEDv2.1), Data Set, available at: http://daac.ornl.gov/, last access: May 2012, 2007. 16146

5

- Richter, A., Burrows, J. P., Nusz, H., Granier, C., and Niemeier, U.: Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437, 129–132, doi:10.1038/nature04092, 2005. 16133
- Rodgers, C. and Connor, B.: Intercomparison of remote sounding instruments, J. Geophys. Res., 108, 4116, doi:10.1029/2002JD002299, 2003. 16137
 - Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, World Science Publishing, London, 2000. 16137
 - Sandu, A. and Chai, T.: Chemical data assimilation an overview, Atmosphere, 3, 426–463, 2011. 16135
- Schoeberl, M. R., Ziemke, J. R., Bojkov, B., Livesey, N., Duncan, B., Strahan, S., Froidevaux, L., Kulawik, S., Bhartia, P. K., Chandra, S., Levelt, P. F., Witte, J. C., Thompson, A. M., Cuevas, E., Redondas, A., Tarasick, D. W., Davies, J., Bodeker, G., Hansen, G., Johnson, B. J., Oltmans, S. J., Voemel, H., Allaart, M., Kelder, H., Newchurch, M., Godin-Beekmann, S., Ancellet, G., Claude, H., Andersen, S. B., Kyrö, E., Parrondos, M., Yela, M., Zablocki, G., Moore,
- D., Dier, H., von der Gathen, P., Viatte, P., Stübi, R., Calpini, B., Skrivankova, P., Dorokhov, V., De Backer, H., Schmidlin, F. J., Coetzee, G., Fujiwara, M., Thouret, V., Posny, F., Morris, G., Merrill, J., Leong, C. P., König-Langlo, G., and Joseph, E.: A trajectory-based estimate of the tropospheric ozone column using the residual method, J. Geophys. Res., 112, D24S49, doi:10.1029/2007JD008773, 2007. 16144
- ²⁵ Schumann, U. and Huntrieser, H.: The global lightning-induced nitrogen oxides source, Atmos. Chem. Phys., 7, 3823–3907, doi:10.5194/acp-7-3823-2007, 2007. 16151, 16169
- Segers, A. J., Eskes, H., van der A, R., van Oss, R., and van Velthoven, P.: Assimilation of GOME ozone profiles and a global chemistry-transport model using a Kalman filter with anisotropic covariance, Q. J. Roy. Meteor. Soc., 131, 477–502, doi:10.1256/qj.04.92, 2005.
 16135, 16156
 - Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A., Unger, N., and Bauer, S. E.: Improved attribution of climate forcing to emissions, J. Geophys. Res., 326, 716–718, doi:10.1126/Science.1174760, 2009. 16133

- Shindell, D. T., Faluvegi, G., Stevenson, D. S., Krol, M. C., Emmons, L. K., Lamarque, J.-F., Petron, G., Dentener, F. J., Ellingsen, K., Schultz, M. G., Wild, O., Amann, M., Atherton, C. S., Bergmann, D. J., Bey, I., Butler, T., Cofala, J., Collins, W. J., Derwent, R. G., Doherty, R. M., Drevet, J., Eskes, H. J., Fiore, A. M., Gauss, M., Hauglustaine, D. A., Horowitz, L.
- ⁵ W., Isaksen, I. S. A., Lawrence, M. G., Montanaro, V., Mueller, J.-F., Pitari, G., Prather, M. J., Pyle, J. A., Rast, S., Rodriguez, J. M., Sanderson, M. G., Savage, N. H., Strahan, S. E., Sudo, K., Szopa, S., Unger, N., van Noije, T. P. C., and Zeng, G.: Multimodel simulations of carbon monoxide: comparison with observations and projected near-future changes, J. Geophys. Res., 111, D19306, doi:10.1029/2006JD007100, 2006. 16168
- ¹⁰ Singh, H. B., Brune, W. H., Crawford, J. H., Flocke, F., and Jacob, D. J.: Chemistry and transport of pollution over the Gulf of Mexico and the Pacific: spring 2006 INTEX-B campaign overview and first results, Atmos. Chem. Phys., 9, 2301–2318, doi:10.5194/acp-9-2301-2009, 2009. 16136, 16145, 16195

Singh, K., Jardak, M., Sandu, A., Bowman, K., Lee, M., and Jones, D.: Construction of non-

- diagonal background error covariance matrices for global chemical data assimilation, Geosci. Model Dev., 4, 299–316, doi:10.5194/gmd-4-299-2011, 2011. 16147, 16154
 - Smit, H. G. J. and Kley, D.: Ozone Sonde Intercomparison Experiment (JOSIE), WMO Global Atmosphere Watch report series, No. 130 (Technical Document No. 926), World Meteorological Organization, Geneva, 1998. 16144
- Stajner, I., Wargan, K., Pawson, S., Hayashi, H., Chang, L. P., Hudman, R. C., Froidevaux, L., Livesey, N., Levelt, P. F., Thompson, A. M., Tarasick, D. W., Stübi, R., Andersen, S. B., Yela, M., König-Langlo, G., Schmidlin, F. J., and Witte, J. C.: Assimilated ozone from EOS-Aura: evaluation of the tropopause region and tropospheric columns, J. Geophys. Res., 113, D16S32, doi:10.1029/2007JD008863, 2008. 16144
- Staudt, A. C., Jacob, D. J., Ravetta, F., Logan, J. A., Bachiochi, D., Krishnamurti, T. N., Sandholm, S., Ridley, B., Singh, H. B., and Talbot, B.: Sources and chemistry of nitrogen oxides over the tropical Pacific, J. Geophys. Res., 108, 8239, doi:10.1029/2002JD002139, 2003. 16163

Stavrakou, T. and Müller, J.-F.: Grid-based versus big region approach for inverting CO emis-

sions using Measurement of Pollution in the Troposphere (MOPITT) data, J. Geophys. Res.,
 111, D15304, doi:10.1029/2005JD006896, 2006. 16133

liectiecion Da	AC 12, 16131–1	PD 6218, 2012						
ner Diecheeint	Simultaneous assimilation of tropospheric composition K. Miyazaki et al.							
יסמגם ר	Title F	Page						
	Abstract	Introduction						
	Conclusions	References						
	Tables	Figures						
Duc	14							
	•	•						
_	Back	Close						
	Full Scre	en / Esc						
	Printer-frien	dly Version						
DDDr	Interactive I	Discussion						

Sudo, K., Takahashi, M., and Akimoto, H.: CHASER: a global chemical model of the troposphere 2. Model results and evaluation, J. Geophys. Res., 107, 4586, doi:10.1029/2001JD001114, 2002. 16145

Thompson, A. M.: The oxidizing capacity of the Earths atmosphere: probable past and future changes, Science, 256, 1157–1168, 1992. 16133

- Thornton, J. A., Wooldridge, P. J., Cohen, R. C., Williams, E. J., Hereid, D., Fehsenfeld, F. C., Stutz, J., and Alicke, B.: Comparisons of in situ and long path measurements of NO₂ in urban plumes, J. Geophys. Res., 108, 4496, doi:10.1029/2003JD003559, 2003. 16145
- Turquety, S., Hadji-Lazaro, J., Clerbaux, C., Hauglustaine, D. A., Clough, S. A., Cassé,
 V., Schlüssel, P., and Mégie, G.: Operational trace gas retrieval algorithm for the Infrared Atmospheric Sounding Interferometer, J. Geophys. Res., 109, D21301,
 - doi:10.1029/2004JD004821, 2004. 16134

5

- van der A, R. J., Eskes, H. J., Boersma, K. F., van Noije, T. P. C., van Roozendael, M., De Smedt, I., Peters, D. H. M. U., Kuenen, J. J. P., and Meijer, E. W.: Trends, seasonal variability
- and dominant NO_x source derived from a ten year record of NO_2 measured from space, J. Geophys. Res., 113, 1–12, doi:10.1029/2007JD009021, 2008. 16133
 - van Loon, M., Builtjes, P., and Segers, A.: Data assimilation of ozone in the atmospheric transport chemistry model LOTOS, Environ. Modell. Softw., 15, 603–609, 2000. 16135
- Worden, J., Kulawik, S. S., Shephard, M. W., Clough, S. A., Worden, H., Bowman, K., and Gold man, A.: Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection, J. Geophys. Res., 109, D09 308, doi:10.1029/2004JD004522, 2004.
 - 16139, 16157 Worden, J., Liu, X., Bowman, K., Chance, K., Beer, R., Eldering, A., Gunson, M., and Worden, H.: Improved tropospheric ozone profile retrievals using OMI and TES radiances,
- J. Geophys. Res., 34, L01809, doi:10.1029/2006GL027806, 2007. 16139 Worden, J., Jones, D. B. A., Liu, J., Parrington, M., Bowman, K., Stajner, I., Beer, R., Jiang, J., Thouret, V., Kulawik, S., Li, J. L. F., Verma, S., and Worden, H.: Observed vertical distribution of tropospheric ozone during the Asian summertime monsoon, J. Geophys. Res., 114, D13304, doi:10.1029/2008JD010560, 2009. 16163
- ³⁰ Zhao, C. and Wang, Y.: Assimilated inversion of NO_x emissions over east Asia using OMI NO₂ column measurements, Geophys. Res. Lett., 36, 1–5, doi:10.1029/2008GL037123, 2009. 16133, 16167

Ziemke, J. R., Chandra, S., Duncan, B. N., Froidevaux, L., Bhartia, P. K., Levelt, P. F., and Waters, J. W.: Tropospheric ozone determined from Aura OMI and MLS: evaluation of measure- ments and comparison with the Global Modeling Initiatives Chemical Transport Model, J. Geophys. Res., 111, D19 303, doi:10.1029/2006JD007089, 2006. 16144, 16195

Discussion Pa	AC 12, 16131–	ACPD 12, 16131–16218, 2012				
per Discussion P	Simultaneous assimilation of tropospheric composition K. Miyazaki et al.					
aper	Title Page					
—	Abstract	Introduction				
Disc	Conclusions	References				
ussion	Tables	Figures				
Pap	I	►I.				
θr	•	•				
	Back	Close				
iscussion Pap	Full Scree Printer-frier	een / Esc adly Version				
θŗ	meractive					

 Table 1. List of satellite observations used for the data assimilation.

Sensor	Platform	Species	Resolution	Version	Reference
OMI TES MOPITT MLS	AURA AURA TERRA AURA	NO ₂ O ₃ CO O ₃ , HNO ₃	13 × 25 km 5.3 × 8.3 km 22 × 22 km	DOMINO ver. 2 Nadir ver. 4 TIR ver. 5 ver. 3.3	Boersma et al. (2011) Beer (2006) Deeter et al. (2010) Livesey et al. (2011)

AC 12, 16131–	ACPD 12, 16131–16218, 2012				
Simult assimil tropos comp	Simultaneous assimilation of tropospheric composition				
K. Miyaz	zaki et al.				
Title	Title Page				
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
I	۶I				
•	•				
Back	Close				
Full Scre	Full Screen / Esc				
Printer-frier	Printer-friendly Version				
Interactive	Interactive Discussion				

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Table 2. List of observations used for the validation.

Sensor	Platform	Species	Resolution	Version	Reference
GOME-2	MetOp	NO_2	80 × 40 km	TEMIS ver. 2	Boersma et al. (2004, 2011)
SCIAMACHY	Envisat	NO ₂	60 × 30 km	TEMIS ver. 2	Boersma et al. (2004, 2011)
TES	AURA	CO	5.3 × 8.3 km	Nadir ver. 4	Parrington et al. (2008)
MLS/OMI	AURA	O ₃	1° × 1.25°	NASA/GSFC	Ziemke et al. (2006)
Ozonesonde	Sonde	O ₃		WOUDC/SHADOWS	
INTEX-B	Aircraft (DC-8)	Many			Singh et al. (2009)
TES MLS/OMI Ozonesonde INTEX-B	AURA AURA Sonde Aircraft (DC-8)	CO O ₃ O ₃ Many	5.3 × 8.3 km 1° × 1.25°	Nadir ver. 4 NASA/GSFC WOUDC/SHADOWS	Parrington et al. (2008) Ziemke et al. (2006) Singh et al. (2009)

Station no.	Name	Latitude	Longitude
STN021	Stonyplain	53.5	-114.1
STN221	Legionowo	52.4	21.0
STN174	Lindendeberg	52.2	14.1
STN316	De Bilt	52.1	5.2
STN053	Uccle	50.8	4.3
STN099	Hohenpeissenberg	47.8	11.0
STN156	Payerine	46.5	6.6
STN458	Yarmouth	43.9	-66.1
STN012	Sapporo	43.1	141.3
STN308	Barajas	40.5	-3.6
STN107	Wallops Island	37.9	-75.5
STN014	Tsukuba	36.1	140.1
STN418	Huntsville	34.7	-86.6
STN190	Naha	26.2	127.7
STN344	Hong Kong	22.3	114.2
STN109	Hilo	19.7	-155.1
STN187	Poona	18.6	73.9
STN494	Alajuela	10.0	-84.2
STN435	Paramaribo	5.8	-55.2
STN434	San cristobal	-0.9	-89.6
STN175	Nairobi	-1.3	36.8
STN466	Maxaranguape	-5.5	-35.3
STN437	Watukosek	-7.5	112.6
STN328	Ascension Island	-8.0	-14.4
STN191	Samoa	-14.2	-170.6
STN394	Broadmeadows	-37.7	144.9
STN256	Lauder	-45.0	169.7
STN029	Macquarie Island	-54.5	158.9

Table 3. List of ozonesonde stations used for the validation.

Table 4. The performance of the data assimilation for different parameters: the horizontal local-
ization length (loc) and the ensemble number (ens). Ten-day mean (averaged over 20-30 Jan-
uary 2007) global mean RMS innovation of the OmF for each assimilated data are shown. The
control (CTL) simulation was conducted with $loc = 450 \text{ km}$ for NO _x emissions and 600 km for
CO emissions, lightning NO _x , and the concentrations, and num = 48 .

	$\begin{array}{c} OMINO_2\\ (10^{15}moleccm^{-2}) \end{array}$	MOPPIT CO (ppbv)	TES O ₃ (ppbv)	MLS O ₃ (ppbv)	MLS HNO ₃ (ppbv)
CTL	1.10	9.05	11.3	81.2	0.64
loc × 0.5	1.13	9.44	11.3	89.1	0.75
loc × 2.0	1.15	8.90	10.8	81.1	0.69
ens = 16	1.11	9.09	11.4	84.4	0.70
ens = 32	1.12	9.06	11.3	82.7	0.66
ens = 64	1.10	9.05	11.3	80.9	0.63

Table 5. Comparisons between the data assimilation run and the satellite retrievals. The results are obtained from 15-day averages (from the 16–30 of each month) for January and July in 2007. Shown are the global spatial correlation (Corr), the global mean difference (Bias), and the global root-mean-square error (RMSE). The model simulation results (without data assimilation) are shown in brackets.

	January				July	
	Corr.	Bias	RMSE	Corr.	Bias	RMSE
OMI NO ₂ $(10^{15} \text{molec cm}^{-2})$	0.92 (0.77)	-0.05 (-0.09)	0.80 (1.04)	0.93 (0.87)	0.01 (-0.10)	0.25 (0.35)
GOME-2 NO ₂ (10^{15} molec cm ⁻²)	0.87 (0.69)	-0.02 (-0.06)	1.09 (1.32)	0.80 (0.79)	0.19 (0.04)	0.33 (0.33)
SCIAMACHY NO ₂ $(10^{15} \text{ molec cm}^{-2})$	0.90 (0.69)	0.11 (0.08)	1.25 (1.53)	0.79 (0.78)	0.23 (0.11)	0.66 (0.66)
MOPITT CO 500 hPa (ppbv)	0.97 (0.92)	0.1 (-7.1)	6.0 (12.6)	0.92 (0.86)	1.1 (–2.2)	7.0 (11.2)
TES CO 700 hPa (ppbv)	0.90 (0.86)	3.3 (-1.5)	15.7 (17.5)	0.83 (0.76)	0.97 (0.03)	13.0 (15.3)
TES CO 300 hPa (ppbv)	0.77 (0.53)	22.2 (13.3)	26.2 (22.1)	0.77 (0.67)	26.1 (17.1)	31.8 (21.7)
TES O ₃ 700 hPa (ppbv)	0.92 (0.89)	-2.7 (-0.4)	5.9 (6.0)	0.91 (0.88)	-3.1 (-2.7)	7.0 (8.0)
TES O ₃ 300 hPa (ppbv)	0.96 (0.93)	5.1 (14.7)	11.0 (20.7)	0.95 (0.90)	3.2 (7.5)	11.7 (18.8)
MLS O ₃ 215 hPa (ppbv)	0.96 (0.93)	10.7 (19.4)	36.8 (47.9)	0.95 (0.90)	10.3 (14.0)	31.9 (63.3)
MLS HNO ₃ 215 hPa (ppbv)	0.81 (0.77)	-0.13 (-0.43)	0.37 (0.57)	0.84 (0.75)	-0.04 (-0.37)	0.36 (0.62)
OMI/MLS TOC (DU)	0.77 (0.73)	-1.1 (3.9)	4.2 (6.3)	0.89 (0.85)	1.3 (1.1)	3.4 (4.2)
Sonde 800–450 hPa (ppbv)		3.4 (4.8)	11.1 (11.6)		-0.15 (-7.14)	19.9 (22.6)
Sonde 450–200 hPa (ppbv)		-0.50 (11.9)	30.7 (34.8)		0.13 (0.98)	30.6 (40.3)
Sonde 200–90 hPa (ppbv)		13.5 (107.0)	122 (208)		4.3 (23.5)	20.6 (45.7)

Table 6. The 15-day average (from the 16–30 of each month) global and regional surface NO_x emissions ($e(NO_x)$, in TgNyr⁻¹), lightning NO_x emissions ($e(LNO_x)$, in TgNyr⁻¹), and surface CO emissions (e(CO), in TgCOyr⁻¹) obtained from the a priori emissions and the a posteriori emissions. GL is global (90° S–90° N); NH is the Northern Hemisphere (20° N–90° N); TR is the tropics (20° S–20° N); and SH is the Southern Hemisphere (90° S–20° S). The emissions optimized from the full assimilation run and the emission inversion run (in bracket) are presented.

		J	lanuary		July
		A priori	A posteriori	A priori	A posteriori
	NH	24.5	24.6 (23.1)	31.5	32.3 (33.9)
$\alpha(NO)$	TR	15.4	14.4 (15.5)	12.9	16.7 (19.7)
$\mathcal{O}(NO_x)$	SH	3.0	3.9 (3.7)	2.4	3.0 (3.6)
	GL	42.8	42.9 (42.3)	46.7	52.0 (57.3)
	NH TR	545 494	661 (906) 359 (440)	721 444	630 (901) 308 (375)
<i>e</i> (CO)	SH	56	41 (69)	53	95 (94) [′]
	GL	1096	1060 (1416)	1217	1033 (1369)
	NH	0.6	0.8	2.9	3.4
e(LNO.,)	IR	2.8	3.3	2.5	3.6
- (=- · · · _X)	SH	1.0	1.1	0.3	0.3
	GL	4.4	5.2	5.7	7.3

Discussion Paper **ACPD** 12, 16131-16218, 2012 Simultaneous assimilation of tropospheric **Discussion Paper** composition K. Miyazaki et al. **Title Page** Abstract Introduction **Discussion** Paper Conclusions References Tables **Figures** ► Back Close **Discussion** Paper Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Table 7. The 15-day average (from the 16–30 of each month) regional surface NO_x emissions ($e(NO_x)$), in TgNyr⁻¹) for Eastern China (110–123° E, 30–40° N), Europe (10° W–30° E, 35–60° N), the Eastern US (95–71° W, 32–43° N), South America (70–50° W, 20° S–Equator), Northern Africa (20° W–40° E, Equator–20° N), Central Africa (10–40° E, 20° S–Equator), Southern Africa (26–31° E, 28–23° S), and Southeast Asia (96–105° E, 10–20° N) for January and July in 2007. The regional emissions obtained from the a priori emissions, the newer inventories (EDGAR version 4.2, GFED version 3.1, and GEIA), and those optimized from the full assimilation run and the emission inversion run (in bracket) are presented.

		Janua	iry	July				
	A priori	A posteriori	newer inventories	A priori	A posteriori	newer inventories		
Europe	5.2	3.3 (3.7)	4.5	6.7	5.6 (5.9)	4.6		
E-USA	2.4	2.8 (2.5)	2.5	3.0	2.2 (3.1)	2.5		
C-Africa	0.7	1.0 (1.3)	0.6	4.9	4.9 (5.9)	3.5		
E-China	2.9	4.8 (4.3)	3.6	3.5	4.8 (4.5)	3.6		
S-Africa	0.2	0.6 (0.6)	0.3	0.3	0.3 (0.3)	0.3		
S-America	0.4	0.6 (0.6)	0.5	0.9	0.6 (0.9)	0.8		
N-Africa	7.4	5.4 (6.1)	4.8	1.6	2.8 (3.2)	1.4		
SE-Asia	0.5	0.9 (0.7)	0.9	0.3	0.4 (0.5)	0.3		

Discussion Pa	AC 12, 16131–1	ACPD 12, 16131–16218, 2012				
ner I Discussion	Simultaneous assimilation of tropospheric composition K. Miyazaki et al.					
Рапе	Title Page					
7		ago				
	Abstract	Introduction				
	Conclusions	References				
lission	Tables	Figures				
Du	14	►I				
Pr	•	•				
_	Back	Close				
	Full Screen / Esc					
	Printer-frier	ndly Version				
Daner	Interactive Discussion					

Table 8. Same as in Table 7, but for the regional surface CO emissions (e(CO), in TgCOyr⁻¹).

	January			July		
	A priori	A posteriori	newer inventories	A priori	A posteriori	newer inventories
Europe	101	102 (156)	31	109	78 (137)	38
E-USA	55	23 (48)	29	60	23 (39)	29
C-Africa	22	16 (17)	15	207	201 (252)	213
E-China	67	176 (198)	62	67	116 (131)	62
S-Africa	3	2 (4)	2	4	11 (11)	6
S-America	13	6 (6)	4	17	5 (6)	39
N-Africa	306	174 (179)	293	59	29 (39)	34
SE-Asia	15	44 (54)	62	8	3 (3)	12

Discussion Pa	AC 12, 16131–1	ACPD 12, 16131–16218, 2012 Simultaneous assimilation of tropospheric composition K. Miyazaki et al.					
iper Discussion F	Simulta assimila tropos compo K. Miyaz						
Paper	Title	Title Page					
—	Abstract	Introduction					
Discu	Conclusions	References					
noissr	Tables	Figures					
Pap	14	۶I					
er	•	Þ					
	Back	Close					
iscussic	Full Scre	Full Screen / Esc					
on Pa	Printer-frien	Printer-friendly Version					
aper	Interactive Discussion						

CC II

Table 9. The 1-day average (on the 19th of each month in 2007) global tropospheric O_3 burden (TgO_3) obtained from the control run, the emission inversion run, and the full data assimilation run.

	January	July
Control	317.1	346.8
Emission inversion	312.5	356.6
Full assimilation	309.4	366.1

ACPD 12, 16131-16218, 2012 Simultaneous assimilation of tropospheric composition K. Miyazaki et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** ∎◄ ► Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Fig. 1. Schematic diagram of the data assimilation system. The ensemble model simulation with a priori emissions is used to provide the background error covariance information (\mathbf{X}^{b}) . The data assimilation is performed using the background error information and the observation information (\mathbf{Y}^{b}) . Then the data assimilation provides a posteriori estimates of surface NO_x emissions, surface CO emissions, lightning NO_x emissions, and 3-D distributions of the chemical species (\mathbf{X}^{a}) . See Sect. 3 for details.

Fig. 2. Schematic diagram of the correlation matrix between observations and the state variables. Satellite data used for the data assimilation are listed in the left column. The model variables updated during the data assimilation are listed in the top row. The blue (gray) colour indicates that correlations between the observed variables and the model variables are considered (neglected using the variable localization technique). See Sect. 3.3 for details.

Fig. 3. Correlations between species in the background error covariance matrix, estimated from the LETKF ensemble at 950 hPa (left) and 500 hPa (right) averaged over 15–20 July 2007. The matrix includes concentrations of all the predicted species, surface NO_x emission (NO_x-emi.), surface CO emissions (CO-emi.), and lightning NO_x sources (LNO_x). The red (blue) colour represents positive (negative) correlations.

Fig. 4. Latitudinal distributions of the effect of data assimilation on the mean concentration of OH, averaged between 800 and 550 hPa for 16–30 January 2007 (left) and 16–30 July 2007 (right). The percentage difference of the zonal mean concentration, averaged between 800 and 550 hPa, between the assimilation runs and the control run is shown for six different assimilation runs; the full assimilation run (with all the data, black) and the five OSEs with TES O₃ data (marble), OMI NO₂ data (light blue), MOPITT CO data (green), MLS O₃ data (red), and MLS HNO₃ data (yellow). A positive (negative) value indicates that the assimilation run has a higher (lower) concentration than the control run.

Fig. 5. The differences in the global spatial correlation, the global mean bias, and the global RMSE between the data assimilation runs and the control run for the 16–30 (from the 7–30 only for the ozonesondes) of January (left) and July (right) in 2007. These scores are first estimated from the comparison against observations listed at the bottom (assimilated data in black and independent data in blue), and then compared with the control run. For the spatial correlation, the difference (the data assimilation runs minus the control run) is positive (negative) when the spatial correlation is higher (lower) in the data assimilation runs than in the control run. For the bias and the RMSE, the error reduction rate defined by Eq. (7) is plotted; the positive (negative) value represents that the error is smaller (larger) in the data assimilation. The results are shown for six different data assimilation runs (the full assimilation run and the five OSEs). The number shown in the bottom list represents the approximate altitude level in hPa.

Fig. 6. χ^2 value estimated for each assimilated data set averaged over the 10–30 January (black) and July (red) in 2007.

Ŧ

Fig. 8. Global distributions of the tropospheric NO_2 columns (in 10^{15} molec cm⁻²), averaged over the period 16–30 January 2007. The results are shown for OMI (left columns), SCIA-MACHY (middle columns), and GOME-2 (right columns). Upper rows show the tropospheric NO_2 columns obtained from the satellite retrievals; centre rows from the control run; and lower rows from the data assimilation run. The averaging kernel of each retrieval is applied to the control run and data assimilation fields.

Fig. 11. Comparison of the vertical O_3 profiles between ozonesondes (black), the control run (blue), and the data assimilation (red) during 7–30 January 2007 (upper panels) and 7–30 July 2007 (lower panels). Upper row of each panel shows the mean profile; center and lower rows of each panel show the mean difference and the RMSE between the control run (the data assimilation run) and ozonesondes in blue (red).

Fig. 12. Same as in Fig. 11, but for the data assimilation with (dashed) and without (solid) the bias correction for TES O_3 data (lower panels) in January (left) and July (right).

Fig. 13. Mean vertical profiles of (a) CO, (b) SO_2 , (c) O_3 , (d) OH, (e) NO_2 , (f) NO, (g) HNO_3 , (h) PAN, (i) HO_2 , (j) CH_2O , and (k) H_2O , obtained from aircraft measurements (black), the control run (blue), and the data assimilation (red), during the INTEX-B campaign, March 2007. The error bars represent the standard deviation of all the data within one bin.

Fig. 15. Analysis ensemble spread of O_3 , CO, and NO_2 averaged over 16–30 July 2007. Upper panels show the global distribution at 700 hPa. Lower panels show the latitude-pressure distribution of the percentage ratio of the zonal mean analysis ensemble spread to the zonal mean analysis ensemble mean concentration.

Fig. 16. Same as Fig. 15, but for the analysis increment. Lower panels show the latitudepressure distribution of the percentage ratio of the zonal mean analysis increment to the zonal mean analysis ensemble mean concentration.

